Skip to main content
Log in

Major, trace, rare earth element, and stable isotope analyses of the Triassic carbonates along the northeastern Arabian Plate margin: a key to understanding paleotectonics and paleoenvironment of the Avroman (Biston) limestone formation from Kurdistan region, northeastern Iraq

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

The Triassic carbonate rocks on the Avroman mountain, Halabja area, consist of massive gray-dark gray-colored detrital and biogenic limestones, that are stratigraphically represented by the Avroman formation in Iraq and Biston formation in Iran. This study focused on the tectonic setting and environmental conditions during the deposition of the formation using major and trace element and rare earth element (REE) analyses, along with their carbon and oxygen isotope data. The geochemical results are substantiated by field and petrographic studies, and extensive literature reviews. The study indicates that the limestones dominantly consist of CaO, followed by MgO, and minor quantities of SiO2 and Al2O3, suggesting a predominantly calcite mineral phase and absence of dolomitization. The negligible amounts of the latter two oxides is possibly due to the lack of siliciclastic input during limestone depostion. Among the trace elements, strontium reported the highest concentrations while displaying a negative correlation with CaO due to the low terrigenous fraction content. Other trace elements such as Ni, Cr, V, Sc, Rb, Ba, Cu, Pb, Zn, U, and Th occur in minor concentrations. The low concentration of uranium (0.0–4.0) and authigenic uranium (average total U − Th/3 value = 0.39), along with a positive value of Mn* indicate depostion from normal seawaters under oxic conditions. The enrichment of heavy REE (HREE) over the light REE (LREE), with negative Ce anomaly and slightly positive Eu and Y anomalies further indicate their precipitation from the seawaters. The negative correlation of ΣREE with Al2O3 FeO, TiO2, Cr Ni, and Sc, and a positive correlation with CaO and Y suggest extremely low contribution of terrigenous siliciclastic sediments and the absence of hydrothermal alterations during limestone precipitation. The δ18O and δ13C values for the four carbonate rocks from Avroman formation varied in the ranges − 3.53 to − 3.02‰ (average − 3.34‰) and 1.15–1.65 (average 1.39‰), respectively. The bivariate plot of δ18O and δ13C suggests that the majority of these carbonates are marine limestones. The Rb–Sr–Ba, La/Sc vs. Ti/Zr, and Sr/Rb vs. Sr/Ba plots categorize the Avroman limestones as carbonates of the continental margin with a tectonic setting relatively far away from igneous activities. Based on the above facts, a tectonic and paleogeographic model was constructed for the formation and was combined with the northeastern Arabian Plate margin, which bordered the Neo-Tethys ocean in the northwest during Triassic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Alavi M (1994) Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. J Tectonophys 229(3–4):211–238

    Google Scholar 

  • Alavi M (1996) Tectonostratigraphic synthesis and structural style of the Alborz mountain system in northern Iran. J Geodyn 21(1):1–33

    Google Scholar 

  • Alavi M (2007) Structures of the Zagros fold-thrust belt in Iran. Am J Sci 307(9):1064–1095

    Google Scholar 

  • Ali SA, Mohajjel M, Aswad K, Ismail S, Buckman S, Jones B (2014) Tectono-stratigraphy and structure of the northwestern Zagros collision zone across the Iraq-Iran border. J Environ Earth Sci 4(4):92–110

    Google Scholar 

  • Alonso-Zarza AM (2003) Palaeoenvironmental significance of palustrine carbonates and calcretes in the geological record. Earth Sci Rev 60:261–298

    Google Scholar 

  • Al-Qayim B, Ibrahim AO, Koyi H (2012) Tectonostratigraphic overview of the Zagros Suture Zone, Kurdistan region, northeast Iraq. Geoarabia 17(4):109–156

    Google Scholar 

  • Azizi H, Hadi A, Asahara Y, Mohammad YO (2013) Geochemistry and geodynamics of the Mawat mafic complex in the Zagros Suture zone, northeast Iraq Cent. Eur J Geosci 5(4):523–537. https://doi.org/10.2478/s13533-012-0151-6

    Article  Google Scholar 

  • Banner JL, Hanson GN, Meyers WJ (1988) Water rock interaction history of regionally extensive dolomites of the Burlington-Keokuk formation (Mississippian): isotopic evidence”, in sedimentology and geochemistry of dolostones, ed. by V. Shukla and P. Baker. SEPM Spec Publ 43:97–114

    Google Scholar 

  • Bau M, Dulski P (1996) Anthropogenic origin of positive gadolinium anomalies in river waters. Earth Planet Sci Lett 143(1–4):245–255

    Google Scholar 

  • Bellanca A, Claps M, Erba E, Masetti D, Neri R, Premoli-Silva I, Venezia F (1996) Orbitally induced limestone/marlstone rhythms in the Albian-Cenomanian Cismon section (Venetian región, northern Italy): sedimentology, calcareous and siliceous plankton distribution, elemental and isotope geochemistry. Palaeogeogr Palaeoclimatol Palaeoecol 126(3–4):227–260

    Google Scholar 

  • Bordine MW, Holland HD, Borczic M (1965) Copreciptation of manganese andstrontium with calcite: in Problems Postmagamtic Ore Deposition. In: Proceedings Symposium, Prague, vol 2, pp 401–406

  • Bolhar R, Kamber BS, Moorbath S, Fedo CM, Whitehouse MJ (2004) characterisation of early Archaean chemical sediments by trace element signatures. Earth Planet Sci Lett 222(1):43–60

    Google Scholar 

  • Brand U, Veizer J (1980) Chemical diagenesis of a multicomponent carbonate system; 1, trace elements. J Sediment Res 50(4):1219–1236

    Google Scholar 

  • Buday T, Jassim SZ (1987) The regional geology of Iraq: tectonism, magmatism and metamorphism, vol 2. Publications of GEOSURV, Baghdad, p 352

    Google Scholar 

  • Buday T, Kassab IIM, Jassim SZ (1980) Regional geology of Iraq: stratigraphy. GEOSURV 1:445

    Google Scholar 

  • Chaudhuri S, Cullers RL (1979) The distribution of rare earth elements in deeply buried Gulf coast sediments. Chem Geol 24:327–338

    Google Scholar 

  • Chen L, Lin ATS, Da X, Yi H, Tsai LLY, Xu G (2012) Sea-level changes recorded by cerium anomalies in the late jurassic (tithonian) black rocks series of Qiangtang basin. North-Central Tibet Oil Shale 29:18–35

    Google Scholar 

  • Davies RB, Simmons M (2018) “Triassic sequence stratigraphy of the Arabian Plate,” in Lower Triassic to Middle Jurassic Sequence of the Arabian Plate. Poppelreiter MC (ed) (Houten: EAGE), pp 101–162

  • De Baar HJ, German CR, Elderfield H, Van Gaans P (1988) Rare earth element distributions in anoxic waters of the Cariaco Trench. Geochim Cosmochim Acta 52(5):1203–1219

    Google Scholar 

  • Dwi Atmoko D, Idnus A, Titisari A (2018) Geochemical characteristics of limestone of wonosari-punung formation, Gunungkidul Regency, Yogyakarta, Indonesia. Ind J Geosci 5(2):179–197

    Google Scholar 

  • Elderfield H (1988) The oceanic chemistry of the rare-earth elements. Phil Trans R Soc London Ser A Math Phys Sci 325(1583):105–126

    Google Scholar 

  • Elderfield H, Greaves MJ (1982) The rare earth elements in seawater. Nature 296:214–219

    Google Scholar 

  • Fairbridge RW (1972) The encyclopedia of geochemistry and environmental sciences. Van Nostrand Reinhold Company, New York

    Google Scholar 

  • Fatah CM. (2014) Assessment of Avroman limestone formation for Portland cement industry Halabja area south-east Sulaimani, Kurditan Region NE-Iraq, Unpublished MSc. Thesis, University of Sulaimani, 164p

  • Frank TD, Arthur MA, Dean WE (1999) Diagenesis of lower cretaceous pelagic carbonates, north Atlantic: paleoceanographic signals obscured. J Foramin Res 29:340–351

    Google Scholar 

  • Frank R, Buchbinder B, Benjamini C (2014) Physiographic discontinuity along the Levant-Margin hinge-belt of the Arabian Plate (Late Cenomanian, northern Israel). J Afr Earth Sc 95:22–40

    Google Scholar 

  • Frimmel HE (2009) Trace element distribution in neoproterozoic carbonates as palaeoenvironmental indicator. Chem Geol 258:338–353

    Google Scholar 

  • German CR, Elderfield H (1989) Rare earth elements in Saanich Inlet, British Columbia, a seasonally anoxic basin. Geochim Cosmochim Acta 53(10):2561–2571

    Google Scholar 

  • German CR, Higgs NC, Thomson J, Mills R, Elderfield H, Blusztajn J, Fleer AP, Bacon MP (1993) A geochemical study of metalliferous sediment from the TAG hydrothermal mound, 26° 08′ N, Mid-Atlantic ridge. J Geophys Res Solid Earth 98(B6):9683–9692

    Google Scholar 

  • Girty GH, Ridge DL, Knaack C, Johnsson D, Al-Riyami RK (1996) Provenance and depositional setting of Paleozoic chert and argillite, Sierra Nevada, California. J Sed Res 66:107–118

    Google Scholar 

  • Graf DL (1960) Geochemistry of carbonate sediments and sedimentary carbonate rocks Part III. Minor element distribution, III. State- Geol Survey Circ 301

  • Hua G, Yuansheng D, Lian Z, Jianghai Y, Hu H, Min L, Yuan W (2013) Trace and rare earth elemental geochemistry of carbonate succession in the middle Gaoyuzhuang formation, Pingquan section: implications for early mesoproterozoic ocean redox conditions. J Palaeogeogr 2(2):209–221

    Google Scholar 

  • Hudson JD (1977) Stable isotopes and limestone lithification. J Geol Soc London 133:637–660

    Google Scholar 

  • Jassim SZ, Goff JC (2006) (eds) Geology of Iraq. DOLIN, sor distributed by Geological Society of London

  • Javid AG, Shaik AR, Shakil AR (2018) Evaluation of terrigenous input, diagenetic alteration and depositional conditions of lower carboniferous carbonates of Tethys Himalaya, India. Solid Earth Sci 3:33–49

    Google Scholar 

  • Karim KH (2007a) Lithology of Avroman formation (Triassic) Northeast Iraq. Iraqi J Earth Sci 7(1):1–12

    Google Scholar 

  • Karim KH (2007b) Stratigraphy and lithology of the Avroman formation (Triassic) Northeast Iraq. Iraqi J Earth Sci 7(1):1–12

    Google Scholar 

  • Karim KH (2020) Early Cretaceous calciturbidites facies from Zagros Fold-Thrust belt: a key to paleogeography and environment of northeast Arabian Platform Passive Margin, examples from Kurdistan Region, Northeast Iraq. Carbonates Evaporites 35:19. https://doi.org/10.1007/s13146-01900544w

    Article  Google Scholar 

  • Karim KH, Abioui M (2021) Geology of the Zagros basaltic bodies: examples from the Avroman Mountains, Kurdistan Region, Northeast Iraq. J Sediment Environ 6:169–188

    Google Scholar 

  • Karim KH, Baziany M (2007) Relationship between qulqula conglomerate formation and red bed series, at Qulqula area, NE-Iraq. Iraqi Natl J Earth Sci 7(1):55–68

    Google Scholar 

  • Karim KH, Koyi H, Baziany MM, Hessami K (2011) Significance of angular unconformities between cretaceous and tertiary strata in the north western segment of the Zagros fold–thrust belt, Kurdistan region, NE- Iraq. Geol Mag Cambridge Univ Press 148(5–6):925–939

    Google Scholar 

  • Karim KH, Salih HMH, Salih TMH, Baziany MM, Ismail KM (2020) Late Cretaceous Syn-depositional mass transport deposits in the turbidites of Zagros Orogenic belt: examples in the Maastrichtian Tanjero formation, Kurdistan region, NE-Iraq. Arab J Geosci 13(23):1–12

    Google Scholar 

  • Kerr AC (2014) Oceanic plateaus. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 4, 2nd edn. Elsevier, Oxford, pp 631–667

    Google Scholar 

  • Koshnaw RI, Horton BK, Stockli DF, Barber DE, Tamar-Agha MY, Kendal JJ (2017) Neogeneshortening and exhumation of the Zagros fold-thrust belt and foreland basin in the Kurdistan region of northern Iraq. Tectonophysics 694:332–355

    Google Scholar 

  • Kurian S, Nath BN, Ramaswamy V, Naman D, Rao TG, Raju KK, Selvaraj K, Chen CTA (2008) Possible detrital, diagenetic and hydrothermal sources for Holocene sediments of the Andaman backarc basin. Mar Geol 247(3–4):178–193

    Google Scholar 

  • Liu YG, Schmitt RA (1990) Cerium anomalies in western Indian Ocean cenozoic carbonates, LEG 115. Proc Ocean Drill Program Sci Results 115:709–714

    Google Scholar 

  • Liu YG, Miah MRU, Schmitt RA (1988) Cerium, a chemical tracer for paleo-oceanic redox conditions. Geochim Cosmochim Acta 52:1361–1371

    Google Scholar 

  • Maala KA (2007) Geological map of Sulaimaniyah quadrangle, scale 1: 250 000. GEOSURV, Baghdad

    Google Scholar 

  • Mac Rae ND, Nesbitt HW, Kronberg BI (1992) Development of a positive Eu anomaly during diagenesis. Earth Planet Sci Lett 109:585–591

    Google Scholar 

  • Madhavaraju J, Gonzalez-Leon CM (2012) Depositionalconditions and source of rare earth elements in carbonate strata of the Aptian-Albian Mural formation, Pitaycachi section, northeastern Sonora, Mexico. Rev Mex Cienc Geol 29:478–491

    Google Scholar 

  • Madhavaraju J, Lee YI (2009) Geochemistry of the Dalmiapuram formation of the Uttatur Group (Early Cretaceous), Cauvery Basin, southeastern India: Implications on provenance and paleoredox conditions. Revista Mexicana De Ciencias Geológicas 26:380–394

    Google Scholar 

  • Madhavaraju J, Ramasamy S (1999) Rare earth elements in limestones of Kallankurichchi formation of Ariyalur Group, Tiruchirapalli Cretaceous, Tamil Nadu. J Geol Soc India 54(3):291–301

    Google Scholar 

  • Madhavaraju J, Löser H, Scott RW, Sandeep S, Sial AN, Ramasamy S (2017) Petrography, geochemistry and stable isotopes of carbonate rocks, Lower Cretaceous Alisitos formation, Los Torotes section, Baja California. Mexico Revista Mexicana De Ciencias Geológicas 34(2):63–77

    Google Scholar 

  • McLennan SM (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Rev Mineral Geochem 21(1):169–200

    Google Scholar 

  • McLennan SM, Fryer BJ, Young GM (1979) The geochemistry of the carbonate-rich Espanola formation (Huronian) with emphasis on the rare earth elements. Can J Earth Sci 16(2):230–239

    Google Scholar 

  • Michard A, Albarede F, Michard G, Minister JF, Charlow JL (1983) Rare earth elements and uranium in high temperature solutions from East-Pacific rise hydrothermal vent field (13oN). Nature 303:795–797

    Google Scholar 

  • Mirza TA, Fatah ChM (2018) Evaluating the suitability of Avroman limestone, Halabja Governorate for cement industry. Iraqi Bull Geol Min 14(1):103–120

    Google Scholar 

  • Moore CH (2001) Carbonate reservoirs: porosity evolution and diagenesis in a sequence stratigraphic framework: developments in sedimentology. Elsevier, Amsterdam, p 460

    Google Scholar 

  • Muecke GK, Pride C, Sarkar P (1979) Rare earth element geochemistry of regional metamorphic rocks. Phys Chem Earth 11:449–464

    Google Scholar 

  • Murray RW, Ten Brink MRB, Gerlach DC, Russ GP, Jones DL (1991) Rare earth, major, and trace elements in chert from the Franciscan complex and monterey Group, California: assessing REE sources to fine-grained marine sediments. Geochim Cosmochim Acta 55(7):1875–1895

    Google Scholar 

  • Nagarajan R, Madhavaraju J, Armstrong-Altrin JS, Nagendra R (2011) Geochemistry of neoproterozoic limestones of the shahabad formation, Bhima basin, Karnataka, southern India. Geosci J 15(1):9–25

    Google Scholar 

  • Nath BN, Bau M, Ramalingeswara Rao B, Rao CM (1997) Trace and rare earth elemental variation in Arabian Sea sediments through a transect across the oxygen minimum zone. Geochim Cosmochim Acta 61:2375–2388

    Google Scholar 

  • Navabpour P, Angelier J, Barrier E (2011) Brittle tectonic reconstruction of palaeo-extension inherited from Mesozoic rifting in West Zagros (Kermanshah, Iran). J Geol Soc 168(4):979–994

    Google Scholar 

  • Nelson CS, Smith AM (1996) Stable oxygen and carbon isotope compositional fields for skeletal and diagenetic components in New Zealand Cenozoic nontropical carbonate sediments and limestones: a synthesis and review. NZ J Geol Geophys 39(1):93–107

    Google Scholar 

  • Neumeister S, Algeo TJ, Bechtel A, Gawlick HJ, Gratzer R, Sachsenhofer RF (2016) Redox conditions and depositional environment of the Lower Jurassic Bächental bituminous marls (Tyrol, Austria). AJES. https://doi.org/10.17738/ajes.2016.0010

    Article  Google Scholar 

  • Nothdurft LD, Webb GE, Kamber BS (2004) Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, Western Australia: confirmation of a seawater proxy in ancient limestones. Geochem Cosmochim Acta 68:263–283

    Google Scholar 

  • Özyurt M, Kırmacı MZ, Al-Aasm I, Hollis C, Taslı K, Kandemir R (2020) REE characteristics of lower cretaceous limestone succession in gümüşhane, NE Turkey: implications for ocean paleoredox conditions and diagenetic alteration. Minerals 10(8):683

    Google Scholar 

  • Patra A, Singh BP (2017) Geochemistry of the eocene limestones of the Jaisalmer Basin, Rajasthan, India: implications on depositional conditions and sources of rare earth elements. Geochem Int 55(12):1180–1192

    Google Scholar 

  • Piepgras DJ, Jacobsen SB (1992) The behaviour of rare earth elements in seawater: precise determination of variations in the North Pacific water column. Geochemica Et Cosmochemica Acta 56(5):1851–1862

    Google Scholar 

  • Sasvari A, Davies L, Mann A, Afzal J, Vakarcs G, Iwaniw E (2015) Dachstein-type Avroman formation: an indicator of the Harsin Basin in Iraq. GeoArabia 20(4):17–36

    Google Scholar 

  • Schieber J (1988) Redistribution of rare-earth elements during diagenesis of carbonate rocks from the Mid-Proterozoic Newland formation, Montana, USA. Chem Geol 69(1–2):111–126

    Google Scholar 

  • Sholkovitz ER, Landing WM, Lewis BL (1994) Ocean particle chemistry: the fractionation of rare earth elements between suspended particles and seawater. Geochim Cosmochim Acta 58(6):1567–1579

    Google Scholar 

  • Siby Kurian Nath BN, Ramasamy V, Naman D, Gnaneshwar R, Kamesh Raju KA, Selvaraj K, Chen CTA (2008) Possible, detrital, diagenetic and hydrothermal sources for Holocene sediments of the Andaman backarc basin. Mar Geol 247:178–193

    Google Scholar 

  • Sissakian VK, Al-Ansari N, Abdullah LH (2020) Neotectonic activity using geomorphological features in the Iraqi Kurdistan Region. Geotech Geol Eng 38(5):4889–4904

    Google Scholar 

  • Smrzka D, Zwicker J, Bach W, Feng D, Himmler T, Chen D, Peckmann J (2019) The behavior of trace elements in seawater, sedimentary pore water, and their incorporation into carbonate minerals: a review. Facies 65(4):1–47

    Google Scholar 

  • Taghipour B, Ahmadnejad F (2015) Geological and geochemical implications of the genesis of the Qolqoleh orogenic gold mineralisation, Kurdistan Province (Iran). Geologos 21(1):31–57

    Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Tobia FH, Aqrawi AM (2016) Geochemistry of rare earth elements in carbonate rocks of the Mirga Mir formation (Lower Triassic), Kurdistan Region, Iraq. Arab J Geosci 9(4):259

    Google Scholar 

  • Tostevin R, Shields GA, Tarbuck GM, HeT CMO, Wood RA (2016) Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings. Chem Geol 438:46–162

    Google Scholar 

  • Tribovillard N, Algeo TJ, Lyons T, Riboulleau A (2006) Trace metals as paleoredox and paleoproductivity proxies: an update. Chem Geol 232(1–2):12–32

    Google Scholar 

  • Turekian KK (1972) Chemistry of the earth. Holt, Rinehart and Winston, New York

    Google Scholar 

  • Veizer J (1983) Chemical diagenesis of carbonates: theory and application. Stable Isot Sediment Geol 10:3–100

    Google Scholar 

  • Veizer J, Demovič R (1973) Environmental and climatic controlled fractionation of elements in the Mesozoic carbonate sequence of the Western Carpathians. J Sediment Petrol 43:258–271

    Google Scholar 

  • Wang YL, Liu YG, Schmitt RA (1986) Rare earth element geochemistry of south Atlantic deep sediments, Ce anomaly change at ~ 54 My. Geochim Cosmochim Acta 50:1337–1355

    Google Scholar 

  • Wani H, Mondal ME (2010) Petrological and geochemical evidence of the paleoproterozoic and the meso-neoproterozoic sedimentary rocks of the Bastar craton, Indian Peninsula: implications on paleoweathering and proterozoic crustal evolution. J Asian Earth Sci 38:220–232

    Google Scholar 

  • Webb GE, Kamber BS (2000) Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy. Geochim Cosmochim Acta 64(9):1557–1565

  • Wignall PB, Myers KJ (1988) Interpreting benthic oxygen levels in mudrocks: a new approach. Geology 16(5):452–455

    Google Scholar 

  • Wilson JL (1975) Carbonate Facies in Geologic History. Springer-Verlag, Berlin, p 471

    Google Scholar 

  • Wrobel-Daveau JC, Ringenbach JC, Tavakoli S, Ruiz GM, Masse P, de Lamotte DF (2010) Evidence for mantle exhumation along the Arabian margin in the Zagros (Kermanshah area, Iran). Arab J Geosci 3(4):499–513

    Google Scholar 

  • Zhang KJ, Xia B, Zhang YX, Liu WL, Zeng L, Li JF, Xu LF (2014) Central Tibetan Meso-Tethyan oceanic plateau. Lithos 210–211:278–288

    Google Scholar 

  • Zhang KJ, Li QH, Yan LL, Zeng L, Lu L, Zhang YX, Hui J, Jin X, Tang XC (2017) Geochemistry of limestones deposited in various plate tectonic settings. Earth Sci Rev 167:27–46

    Google Scholar 

  • Zhao YY, Zheng YF, Chen F (2009) Trace element and strontium isotope constraints on sedimentary environment of Ediacaran carbonates in southern Anhui, South China . Chem Geol 265(3–4):345–362

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to GeoAnalytical Laboratory, School of Earth and Environmental Science, Washington State University, and the SGS laboratory in Canada for their assistance in the geochemical analyses. We thank the experts of the Elsevier Language Editing Services team for their generous and faithful help in improving our manuscript linguistically and suggesting many construction corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tola A. Mirza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirza, T.A., Karim, K.H., Ridha, S.M. et al. Major, trace, rare earth element, and stable isotope analyses of the Triassic carbonates along the northeastern Arabian Plate margin: a key to understanding paleotectonics and paleoenvironment of the Avroman (Biston) limestone formation from Kurdistan region, northeastern Iraq. Carbonates Evaporites 36, 66 (2021). https://doi.org/10.1007/s13146-021-00733-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13146-021-00733-6

Keywords

Navigation