Skip to main content
Log in

Facies distribution, depositional environment, and diagenetic features of the Permian Jamal Formation, Central Iran basin

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

The Permian Jamal Formation characterized as one of the most significant successions in the Central Iran basin and constitutes a thick section (as much as 180 m) of limestone, dolomitic limestone, and dolomite in southeastern Kharu village in Tang-e Sarve area. The facies analysis of Jamal Formation leads to the identification of 11 microfacies, which are attributable to shoal, lagoon, and tidal flat environments. Results from petrographic evidence as well as facies analysis demonstrate that the depositional environment of Jamal Formation in the studied area (Kharu village, East Tabas) exhibits the characteristics of a homoclinal carbonate ramp platform with the gentle slope. This platform is mainly composed of tidal flat, lagoon, and shoal sub-environments. According to facies frequency analysis, the lagoon environment accounts for the highest abundance of facies (48%), whereas tidal flat environment shows the least abundance (17%). Bioturbation, micritization, cementation, dolomitization, neomorphism, physical and chemical compaction, and fracturing are the most important diagenetic features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aghanabati A (1977) Etudgeologique de la region de Kalmard (W. Tabas). Geological Survey of Iran, Iran, pp 51–63

    Google Scholar 

  • Aghanabati A (2004) Geology of Iran: Tehran. Geol Surv Iran 586:19–30 (in Persian)

    Google Scholar 

  • Alavi M (1991) Sedimentary and structural characteristics of the Paleo-Tethys remnants in northeastern Iran. Geol Soc Ame Bull 103:983–992

    Article  Google Scholar 

  • Alavi M, Vazir H, Seyed-Emami K, Lasemi Y (1997) The Triassic and associated rocks of the Nakhlak and Aghdarband areas in central and northeastern Iran as remnants of the southern Turanian active continental margin. Geol Soc Am Bull 109:1563–1575

    Article  Google Scholar 

  • Aleali M, Rahimpour-Bonab H, Moussavi-Harami R, Jahani D, Asadi-Eskandar A (2013) Depositional environment and sequence stratigraphy of the Kangan Formation in South Pars field. Geosciences 22:65–74

    Google Scholar 

  • Alsharhan AS, Whittle L (1995) Carbonate-evaporite sequences of the Late Jurassic—southern and southwestern Arabian Gulf. AAPG Bull 79:1608–1630

    Google Scholar 

  • Alsharhan AS, Kendall CG, St C (2003) Holocene coastal carbonates and evaporites of the southern Arabian Gulf and their ancient analogue. Earth Sci Rev 61:191–243

    Article  Google Scholar 

  • Arefifard S, Davydov VI (2005) Petrography and geochemistry of Permian Strata in Tabas and Kalmard regions, Eastern-Central Iran. Geophys Res Abstr 7(00484):2005

    Google Scholar 

  • Arefifard S, Isaacson P (2009) Microbiostratigraphy of Permian deposits in central Iran. EGU General Assembly conference, 19–24 April, 2009, Vienna, Austria, p 1699

  • Arefifard S, Isaacson PE (2011) Permian sequence stratigraphy in east-central Iran: microplate records of Peri-Tethyan and Peri-Gondwanan events. Stratigraphy 8(1):61–83

    Google Scholar 

  • Bachmann M, Hirsch F (2006) Lower Cretaceous carbonate platform of the eastern Levant (Galilee and the Golan Heights): stratigraphy and second-order sea-level change. Cretac Res 27:487–512

    Article  Google Scholar 

  • Bathurst RGC (1966) Boring algae, micrite envelopes and lithification of molluscan biosparites. Geol J 5:15–32

    Article  Google Scholar 

  • Bathurst RGC (1989) Early diagenesis in carbonate sediments. In: Parker A, Sellwood BW (eds) Sediment diagenesis. Reidel, Dordrecht, pp 345–377

    Google Scholar 

  • Bosence DWJ, Gibbons KA, Le Heron DP, Morgan WA, Pritchard T, Vining BA (2015) Microbial carbonates in space and time: implications for global exploration and production. Geol Soc Lond Spec Publ 418:1–15

    Article  Google Scholar 

  • Bottjer DJ, Droser ML (1994) The history of Phanerozoic bioturbation. In: Donovan SK (ed) Palaeobiology of trace fossils. Wiley, Chichester, pp 155–176

    Google Scholar 

  • Brandano M, Frezza V, Tomassetti L, Pedley M (2010) Facies analysis and paleoenvironmental interpretation of the Late Oligocene Attard member (Lower Coralline Limestone Formation), Malta. Sedimentology 56:1138–1158

    Article  Google Scholar 

  • Bricker OP (1973) Carbonate cements. John Hopkins University Studies in Geology, Baltimore, pp 19–376

    Google Scholar 

  • Bromley RG (1994) The palaeoecology of bioerosion. In: Donovan SK (ed) The paleobiology of trace fossils. Belhaven, London, pp 133–154

    Google Scholar 

  • Bromley RG (1996) Trace fossils: biology, taphonomy and applications, 2nd edn. Kluwer, Dordrecht

    Book  Google Scholar 

  • Brunet MF, Granath JW, Wilmsen M (2009) South Caspian to Central Iran basins. Geol Soc Lond Spec Publ 312:1–6

    Article  Google Scholar 

  • Burchette TP, Wright VP (1992) Carbonate ramp depositional systems. In: Sellwood BW (ed) Ramps and Reefs. Sedimentary Geology, vol 79. Elsevier, Amsterdam, pp 3–57

    Google Scholar 

  • Choquette PW, James NP (1987) Diagenesis, 12, Diagenesis in limestones, 3, The deep burial environment. Geosci Can 14:3–35

    Google Scholar 

  • Davidov V, Arefifard S (2007) Permian fusulinid fauna of Peri-Gondwana affinity from the Kalmard region, east-central Iran and its significance for tectonics and paleogeography. Palaeontol Electron 10(2):40

    Google Scholar 

  • Demicco RV, Hardie LA (1994) Sedimentary structures and early diagenetic features of shallow marine carbonate deposits, vol 1. SEPM, USA, p 265

    Google Scholar 

  • Dercourt J, Ricou LE, Vriel Ynck B (1993) Atlas Tethys paleoenvironmental Maps. Gauthier-Villars, Paris, p 307

    Google Scholar 

  • Dunham RJ, (1962) Classification of carbonate rocks according to depositional texture. In: Ham ED (ed) Classification of carbonate rocks: A Symposium: American Association of Petroleum Geologists. Memoir 1, 108–121

  • Embry AF, Klovan JE (1971) A late Devonian reef tract on Northeastern Banks Island, Northwest Territories. Bull Can Pet Geol 19(4):730–781

    Google Scholar 

  • Ernst A, Senowbari-Daryan B, Hamedani A (2006a) Middle Permian Bryozoa from the Lakaftari area, central Iran. Geodiversitas 28:543–590

    Google Scholar 

  • Ernst A, Senowbari-Daryan B, Rashidi K (2006b) Lower Permian Bryozoa of the Jamal Formation from Bagh-e Vang (Shotori Mountains, northeast Iran). Facies 52:627–635

    Article  Google Scholar 

  • Ernst A, Senowbari-Daryan B, Rashidi K (2008) Permian Bryozoa from the Jamal Formation of Shotori mountains (northeast Iran). Rev Paleobiol 27(2):395–408

    Google Scholar 

  • Ernst A, Senowbari-Daryan B, Rashidi K (2009a) Rhabdomesid and cystoporid bryozoans from the Permian of Deh-e Mohammad, Shotori mountains (northeastern Iran). Geobios 42(2):133–140

    Article  Google Scholar 

  • Ernst A, Senowbari-Daryan B, Rashidi K (2009b) Bryozoa from the Surmaq Formation (Permian) of the Hambast mountains, south of Abadeh, central Iran. Facies 55:595–608

    Article  Google Scholar 

  • Flugel E (2010) Microfacies analysis of limestone: analysis. Springer, Berlin, p 976

    Google Scholar 

  • Flügel E (1991) Triassic and Jurassic marine calcareous algae: a critical review. In: Riding R (ed) Calcareous algae and stromatolites. Springer, Berlin, pp 481–503

    Chapter  Google Scholar 

  • Geel T (2000) Recognition of stratigraphic sequences in carbonate platform and slope deposits: empirical models based on microfacies analysis of Paleogene deposits in southeastern Spain. Paleogeogr Palaeoclimatol Palaeoecol 155:211–238

    Article  Google Scholar 

  • Harris PM, Kendall CG, St C, Lerche J (1985a) Carbonate cementation: a brief review. In: Schneidermann M, Harris PM (eds) Carbonate cements. Society of Economic Paleontologists and Mineralogists, Tulsa, pp 79–95

    Chapter  Google Scholar 

  • Harris PM, Moore CH, Wilson JL (1985b) Carbonate depositional environments. Modern and ancient. Part 2: carbonate platforms, vol 80. Colorado School of Mines Quart, USA, pp 1–60

    Google Scholar 

  • Hessami K, Nilforoushan F, Talbot CJ (2006) Active deformation within the Zagros mountains deduced from GPS measurements. J Geol Soc 163:143–148

    Article  Google Scholar 

  • Hird K, Tucker ME (1988) Contrasting diagenesis of two Carboniferous oolites from South Wales: a tale of climatic influence. Sedimentology 35:587–602

    Article  Google Scholar 

  • James NP (1991) Diagenesis of carbonate sediments, notes to accompany a short course. Geological Society of Australia, p 101

  • James NP, Choquette PW (1983) Diagenesis 6 limestone: the sea floor digenetic environment. Geosci Can 10:162–179

    Google Scholar 

  • James NP, Choquette PW (1990a) Limestones—the meteoric diagenetic environment. In: Morrow DW (ed) Macillreath IA, vol 11. Diagenesis Geoscience Canada, Canada, pp 161–194

    Google Scholar 

  • James NP, Choquette PW (1990b) Limestones—the burial diagenetic environments. In: Macillreath IA, Morrow DW (eds) Diagenesis, vol 4. Geoscience Canada Reprint, Canada, pp 75–111

    Google Scholar 

  • James NP, Jones B (2015) Origin of carbonate sedimentary rocks. American Geophysical Union, Washington, p 464

    Google Scholar 

  • Jenny-Deshusses C (1983) Le Permian de l´Elborz Central et Oriental (Iran): Stratigraphie et micropaleontologie (Foraminifères et Algues). Unpubl. These, no. 2130, University de Geneva, Section des sciences de la terre, Geneva, p 265

  • Jones SJ (2015) Introducing sedimentology. Dunedin Academic Press, Edinburgh, p 96

    Google Scholar 

  • Kahler F (1974) Iranische Fusuliniden, vol 117. Jahrbuch für Geologie, Wien, pp 75–107

    Google Scholar 

  • Kahler F (1977) Fusuliniden aus der Mediterranische-Iranische Gebiet. Neues Jahrbuch fûr Geologie und Paleontologie 4:199–216

    Google Scholar 

  • Kendall AC (1975) Post-compactional calcitization of molluscan aragonite in a Jurassic limestone from Saskatchewan, Canada. J. Sediment Petrol 45:399–404

    Article  Google Scholar 

  • Kobluk DR, Risk MJ (1977) Calcification of exposed filaments of endolithic algae, micrite envelope formation and sediment production. J Sediment Petrol 47:517–528

    Google Scholar 

  • Korngreen D, Benjamini C (2010) The epicontinental subsiding margin of the Triassic in Northern Israel, North Arabian Plate. Sediment Geol 228:14–45

    Article  Google Scholar 

  • Lasemi Y, Jahani D, Amin-Rasouli H, Lasemi Z (2012) Ancient carbonate tidalites. In: Davis RA, Dalrymple RW (eds) Principles of tidal sedimentology. Springer, Heidelberg, pp 567–607

    Chapter  Google Scholar 

  • Leven E Ja, Taheri A (2003) Carboniferous-Permian stratigraphy and fusulinids of East Iran. Gzhelian and Asselian deposits of the Ozbak-Kuh region. Riv Ital Paleontol Stratigr 109:21–38

    Google Scholar 

  • Leven E Ja, Vaziri Moghaddam H (2004) Carboniferous–Permian stratigraphy and fusulinids of eastern Iran, The Permian in the Bagh-e- Vang section (Shirgesht area). Riv Ital Paleontol Stratigr 110:441–465

    Google Scholar 

  • Leven EJA, Gorgij MN (2006) Upper Carboniferous-Permian stratigraphy and fusulinids from the Anarak region, central Iran. Russ J Earth Sci 8:25

    Article  Google Scholar 

  • Logan BW, Rezak R, Ginsburg RN (1964) Classification and environmental significance of algal stromatolites. J Geol 72:68–83

    Article  Google Scholar 

  • Longman MW (1980) Carbonate diagenetic textures from near surface diagenetic environments. Am Assoc Petrol Geol Bull 64:461–487

    Google Scholar 

  • Maliva RG (1995) Recurrent neomorphic and cement microtextures from different diagenetic environments, quaternary to late neogene carbonates, Great Bahama Bank. Sediment Geol 97:1–7

    Article  Google Scholar 

  • Meyers WJ (1991) Calcite cement stratigraphy: an overview. In: Barker CE, Kopp OC (eds) Luminescence microscopy and spectroscopy: qualitative and quantitative applications, vol 25. SEPM Short Course, USA, pp 133–148

    Google Scholar 

  • Middleton GV, Church MJ, Coniglio M, Hardie LA, Longstaffe FJ (2003) Encyclopedia of sediments and sedimentary rocks. Springer, Netherlands, p 821

    Google Scholar 

  • Moore CH (1989) Carbonate diagenesis and porosity. Elsevier, Amsterdam, p 338

    Google Scholar 

  • Moore CH, Wade WJ (2013) Carbonate reservoirs: porosity, evolution and diagenesis in a sequence stratigraphic framework: porosity evolution and diagenesis in a sequence stratigraphic framework, 2nd edn. Elsevier, Amsterdam, p 369

    Google Scholar 

  • Mousavi SM (2017) Mapping seismic moment and b-value within the continental-collision orogenic-belt region of the Iranian Plateau. J Geodyn 103(2017):26–41

    Article  Google Scholar 

  • Naimi-Ghassabian N, Khatib MM, Nazari H, Heyhat MR (2015) Present-day tectonic regime and stress patterns from the formal inversion of focal mechanism data, in the North of Central-East Iran Blocks. J Afr Earth Sci 111:113–126

    Article  Google Scholar 

  • Nogole sadat MA (1978) Les zones de decrochement et les virgations structurales en Iran. Consequences des resultants de l’analyse structurales de la region de Qom. Unpubl. Ph. D. Thesis, University Scientifique et Medicate de Gernoble, p 201

  • Palma RM, Lopez- Gomez J, Piethe RD (2007) Oxfordian ramp system (La Manga formation) in the Bardas Blances area (Mendoza Province) Neuquen Basin Argentina: facies and depositional sequences. Sedimentary Geology 195:113–134

    Article  Google Scholar 

  • Partoazar H (1992) Changsingian stage in east Iran. Discovery of genus Colaniella and its biostratigraphic importance. Geol Surv Iran Geosci Period 3:44–53 (in Farsi with English abstract)

    Google Scholar 

  • Partoazar M (1995) Permian deposits in Iran. Geol Surv Iran 22:340 (in Persian)

    Google Scholar 

  • Partoazar M, Hamdi B, Aghanabati SA (2014) New approach on biostratigraphy of Permian deposits of Jamal formation in Bagh Vang section, Shirgesht area (Central Iran). Geopersia 4(2):141–154

    Google Scholar 

  • Patterson WP, Walter LM (1994) Syndepositional diagenesis of modern platform carbonates: evidence from isotopic and minor element data. Geology 22:127–130

    Article  Google Scholar 

  • Pierson BJ, Shinn EA (1985) Cement distribution and carbonate mineral stabilization in Pleistocene limestones of Hogsty Reef, Bahamas. In: Schneidermann N, Harris PM (eds) Carbonate cements, Special Publication 36. Society of Economic Paleontologists and Mineralogists, Tulsa, pp 153–168

    Chapter  Google Scholar 

  • Pingitore NE (1976) Vadose and phreatic diagenesis: processes, products and their recognition in corals. J Sediment Petrol 46:985–1006

    Article  Google Scholar 

  • Pomar L (2001) Types of carbonate platforms: a genetic approach. Basin Res 13:313–334

    Article  Google Scholar 

  • Pratt BR (2010) Peritidal carbonates. In: James NP, Dalrymple RG (eds) Facies models, 3rd edn. Geological Association of Canada, St. John’s (in press)

    Google Scholar 

  • Rankey E, Berkeley A (2012) Holocene carbonate tidal flats. In: Davis RA Jr, Dalrymple RW (eds) Principles of tidal sedimentology. Springer, Netherlands, pp 507–535

    Chapter  Google Scholar 

  • Rashidi K, Senowbari-Daryan B (2010) Dasycladales from the Permian Jamal Formation of Shotori mountains, northeast Iran. Facies 56:111–137

    Article  Google Scholar 

  • Read JF (1985) Carbonate platform facies models. Am Assoc Pet Geol Bull 69:1–21

    Google Scholar 

  • Reid RP, Macintyre IG, Post JE (1992) Micritized skeletal grains in northern Belize lagoon: a major source of Mg–calcite mud. J Sediment Petrol 62:145–156

    Google Scholar 

  • Reilinger R, McClusky S, Vernant P, Lawrence S (2006) GPS constraints on continental deformation in the Africa–Arabia–Eurasia continental collision zone and implications for the dynamics of plate interactions. J Geophys Res 111:B05411. https://doi.org/10.1029/2005JB004051

    Article  Google Scholar 

  • Riding R (1999) The term stromatolite: towards an essential definition. Lethaia 32:321–330

    Article  Google Scholar 

  • Riding R (2000) Microbial carbonates: the geological record of calcified bacterial–algal mats and biofilms. Sedimentology 47:179–214

    Article  Google Scholar 

  • Rigby JK, Senowbari-Daryan B, Hamedani A (2005) First reported occurrence of wewokellid sponges (Calcarea, Heteractinida) from the Permian of central Iran. Facies 51:516–521

    Article  Google Scholar 

  • Ruban DA, Al-Husseini MI, Iwasaki Y (2007) Review of Middle East Paleozoic plate tectonics. GeoArabia 12(3):35–56

    Google Scholar 

  • Rutner A, Nabavi M, Hajian J (1968) Geology of the shirgesht area (Tabas area, East Iran), Tehran. Geol Surv Iran Rep 4:133

    Google Scholar 

  • Sandberg P (1985) Aragonite cements and their occurrence-in ancient limestones. In: Schneidermann N, Harris PM (eds) Carbonate cements, vol 36. Society of Economic Paleontologists and Mineralogists, Tulsa, pp 33–58

    Chapter  Google Scholar 

  • Schneidermann N, Harris PM (1985) Carbonate cements, vol 36. Society of Economic Paleontologists and Mineralogists, Tulsa, p 397

    Book  Google Scholar 

  • Scoffin TP (1988) The environments of production and deposition of calcareous sediments on the shelf west of Scotland. Sediment Geol 60:107–134

    Article  Google Scholar 

  • Scotese CR, Langford RP (1995) Pangea and the paleogeography of the Permian. In: Scholl PA, Peryt TM, Ulmer-Scholl DS (eds) The Permian of Northern Pangea. Springer, Berlin, pp 3–19

    Chapter  Google Scholar 

  • Sengor AC (1984) The Cimmeride orogenic system and the tectonics of Eurasia. Boulder Geol Soc Am Spec Pap 19:82

    Google Scholar 

  • Senowbari-Daryan B, Hamedani A (2002) First report of the occurence of Amblysiphonella, a thalamid sponge from the Permian of Iran and description of A. iranica n. sp. from central Iran. Rev Paleobiol Genève 21(2):795–801

    Google Scholar 

  • Senowbari-Daryan B, Rashidi K (2010) The codiacean genera Anchicodium Johnson, 1946 and Iranicodium nov. gen. from the Permian Jamal Formation of Shotori mountains, northeast Iran. Rivista Italiana di Paleontologia e Stratigraphia 116(1):3–21

    Google Scholar 

  • Senowbari-Daryan B, Rashidi K (2011) Lercaritubus Problematicus Flugel, Senowbari-Daryan and di Stefano and Vangia Telleri (Flugel): two problematic organisms from the Permian Jamal Formation of Shotori mountains, northeast Iran. Rivista Italiana di Paleontologia e Stratigrafia 117(1):105–114

    Google Scholar 

  • Senowbari-Daryan B, Rashidi K, Hamedani A (2006) Sponge assemblage of the Permian reefal limestones of Kuh-e Bagh-e Vang, Shotori mountains (East Iran). Geol Carp 56(6):381–406

    Google Scholar 

  • Senowbari-Daryan B, Hamedani A, Rashidi K (2007) Sponges from the permian of hambast mountains, south of Abadeh, Central Iran. Facies 53(4):575–614

    Article  Google Scholar 

  • Senowbari-Daryan B, Rashidi K, Saberzadeh B (2011) Dasycladalean green algae and some problematic algae from the Upper Triassic of the Nayband Formation (northeast Iran). Geol Carpa 62(6):501–517

    Article  Google Scholar 

  • Shinn EA (1968) Burrowing in recent lime sediments of Florida and the Bahamas. J Palaeontol 42:879–894

    Google Scholar 

  • Shinn EA (1983) Tidal flat environment. In: Scholle PA, Bebout DG, Moore CH (eds) Carbonate depositional environments. American Association Petroleum Geologists, Tulsa, pp 173–210

    Google Scholar 

  • Shinn EA (1986) Modern carbonate tidal flats: their diagnostic features, vol 81. Colorado School of Mines Quarterly, Colorado, pp 7–35

    Google Scholar 

  • Sotohian F (2016) Microfacies and sequence stratigraphy of the Permian rocks in Kuh-Jamal section (Tabas). J Curr Res Sci 1:477–486

    Google Scholar 

  • Stocklin J (1977) Structural correlation of the Alpine ranges between Iran and Central Asia. Memoires hors-series de la Societé géologique de France 8:333–353

    Google Scholar 

  • Stocklin J, Nabavi MH (1969) Geologic map of the Boshruyeh, Scale 1:250 000, No. J7. Geological Survey of Iran

  • Stocklin J, Eftekhar-Nezhad J, Hushmand-Zadeh A (1965) Geology of the Shotori range (Tabas area, East Iran). Geol Surv Iran Rep 3:69 (in Persian)

    Google Scholar 

  • Taheri A (2002) Stratigraphy of Permian sediments in Tabas area. Ph.D. thesis, Univ. Isfahan, p 157 (in Persian)

  • Takin M (1972) Iranian geology and continental drift in the Middle East. Nature 235:147–150

    Article  Google Scholar 

  • Torsvik TH, Cocks LRM (2004) Earth geography from 400 to 250 Ma: a palaeomagnetic, faunal and facies review. J Geol Soc Lond 161:555–572

    Article  Google Scholar 

  • Tucker ME (2001) Sedimentary petrology, 3rd edn. Blackwell, Oxford, p 262

    Google Scholar 

  • Tucker ME, Bathurst RGC (1990) Carbonate diagenesis. Int Assoc Sedimento Repr Ser 1:312

    Google Scholar 

  • Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell, Oxford, p 482

    Book  Google Scholar 

  • Warren JK (2006) Evaporites: sediments, resources and hydrocarbons: Springer, Berlin, p 1041

    Book  Google Scholar 

  • Wilson JL (1975) Carbonate facies in geological history. Springer, Berlin, p 471

    Book  Google Scholar 

  • Wray JL (1977) Calcareous algae. Elsevier, New York, p 185

    Google Scholar 

  • Yarahmadzahi H (2011) Fusulinids biostratigraphy and sequence stratigraphy of Lower Permian deposits in Central Iran (Isfahan, Shareza, Abadeh and Yazd areas), PhD thesis, Science and Research Branch, Islamic Azad University, Tehran, Iran (in Persian)

Download references

Acknowledgements

The Department of Geology, Science and Research Branch, Islamic Azad University, Tehran, Iran supported this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Aleali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghajani, F., Aleali, M. Facies distribution, depositional environment, and diagenetic features of the Permian Jamal Formation, Central Iran basin. Carbonates Evaporites 34, 1799–1813 (2019). https://doi.org/10.1007/s13146-019-00528-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13146-019-00528-w

Keywords

Navigation