Skip to main content
Log in

Isochirotherium trackways, their possible trackmakers (?Arizonasaurus): intercontinental giant archosaur migrations in the Middle Triassic tsunami-influenced carbonate intertidal mud flats of the European Germanic Basin

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

A remarkable Middle Triassic (Pelsonian, Anisian) fossil track site at Bernburg in Central Germany permits reconstruction of a tetrapod fauna at the point of recovery when early poposaur quadruped dinosaurs diversificated globally. The site has yielded numerous tetrapod and thousands of arthropod horseshoecrab tracks from several levels in intertidal biolaminites with intercalated storm and seismic-influenced carbonates. The tetrapod tracks, Procolophonichnium, Rhynchosauroides, Chirotherium, and Isochirotherium, are assigned to smaller Archosauromorpha and large Archosauria. The largest chirotheroid tracks Isochirotherium herculis (Egerton in Proc Geol Soc London 3:14–15, 1838) reach up to 350-mm-long pes sizes and 120-mm-long manus imprints. Those were most probably made by a 5-m-long poposauroid archosaur like Arizonasaurus, based on matching skeleton anatomy and trackways including a new three-dimensional model of those giants in locomotion. A first German poposauroid bone record is added herein with a scapula from shallow marine carbonates of similar Pelsonian ages. These crurotarsan archosaurs were at the top of their food chains globally, and fed most probably on smaller tetrapods (Hescheleria, Macrocnemus), the latter also represented well by long behavioural escaping Rhynchosauroides trackways. The smaller reptiles may have fed especially on “Millions” of horseshoecrab eggs in those arthropod reproduction seasons in the intertidal carbonate mud flats. Such tidal flats and sabkhas extended over hundreds of square kilometres surrounding the Germanic Basin in Central Europe in the Middle Triassic, representing a drastic change in the palaeoenvironment of central Pangaea, and a possible trigger for continuing diversification of archosauromorphs and eventually dinosaurs. The horseshoecrab reproduction seasons seem to have caused a food chain reaction along the southern Pangaean (northern Tethys) coast in carbonate mud flats between Northern America, Africa, Europe and China, with possibly long-distance migrations of poposauroids such as Arizonasaurus, whose bones were found in terrestrial to shallow marine carbonate deposits in terrest to coastal context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aigner T, Bachmann GH (1992) Sequence stratigraphic framework of the German Triassic. Sediment Geol 80:115–135

    Article  Google Scholar 

  • Avanzini M (2002) Dinosauromorph tracks from the middle Triassic (Anisian) of the southern Alps (Valle di non-Italy). Boll Soc Paleont Ital 41:37–40

    Google Scholar 

  • Avanzini M, Leonardi N (2002) Isochirotherium inferni ichnosp. nov. in the Illyrian (late Anisian, middle Triassic) of Adige Valley (Bolzano-Italy). Boll Soc Paleont Ital 41:41–50

    Google Scholar 

  • Avanzini M, Lockley M (2002) Middle Triassic archosaur population structure: interpretation based on Isochirotherium delicatum fossil footprints (southern Alps, Italy). Palaeogeogr Palaeoclimat Palaeoec 185:391–402

    Article  Google Scholar 

  • Azam MH, Elshorbagy W, Nakata K (2006) Three-dimensional modeling of the Ruwais coastal area of United Arab Emirates. J Waterw Port, Coast Ocean Eng 2006:487–495

    Article  Google Scholar 

  • Bachmann GH, Aref MAM (2005) A seismite in Triassic gypsum deposits (Grabfeld Formation, Ladinian), southwest Germany. Sediment Geol 180:75–89

    Article  Google Scholar 

  • Bachmann GH, Kozur HW (2004) The Germanic Triassic: correlations with the international chronostratigraphic scale, numerical ages and Milankovitch cyclicity. Hall Jb Geowissensch B 26:17–62

    Google Scholar 

  • Bachmann GH, Ehling B-C, Eichner R, Schwar N (2008) Geologie von Sachsen-Anhalt. Schweizerbart, Stuttgart 689 p

    Google Scholar 

  • Benton MJ (2011) Archosaur remains from the otter sandstone formation (Middle Triassic, late Anisian) of Devon, southern UK. Proc Geol Assoc 122:25–53

    Article  Google Scholar 

  • Benton MJ, Gower DJ (1997) Richard Owen’s giant Triassic frogs: archosaurs from the Middle Triassic of England. J Vert Paleont 17:74–88

    Article  Google Scholar 

  • Brothers RJ, Kemp AE, Maltman AJ (1996) Mechanical development of vein structures due to the passage of earthquake waves through poorly-consolidated sediments. Tectonophysics 266:227–244

    Article  Google Scholar 

  • Brusatte SL, Benton MJ, Desojo JB, Langer MC (2010) The higher-level phylogeny of Archosauria (Tetrapoda: Diapsida). J Syst Palaeont 8:3–47

    Article  Google Scholar 

  • Brusatte SL, Benton MJ, Lloyd GT, Ruta M, Wang GSC (2011a) Macroevolutionary patterns in the evolutionary radiation of archosaurs (Tetrapoda: Diapsida). Earth Environ Sci Trans Roy Soc Edinb 101:367–382

    Article  Google Scholar 

  • Brusatte SL, Niedzwiedzki G, Butler RJ (2011b) Footprints pull origin and diversification of dinosaur stem lineage deep into Early Triassic. Proc Roy Soc London B 278:1107–1113

    Article  Google Scholar 

  • Butler RJ, Brusatte SL, Reich M, Nesbitt SJ, Schoch RR, Hornung JJ (2011) The sail-backed reptile Ctenosauriscus from the latest Early Triassic of Germany and the timing and biogeography of the early archosaur radiation. PLoS One 6:e25693

    Article  Google Scholar 

  • Carrano MT, Wilson JA (2001) Taxon distributions and the tetrapod track record. Paleobiology 27:564–582

    Article  Google Scholar 

  • Dalla Vecchia FM (2008) The impact of dinosaur palaeoichnology in palaeoenvironmental and palaeogeographic reconstructions: the case of the Periadriatic carbonate platforms. Oryctos 8:89–106

    Google Scholar 

  • Demathieu GR (1970) Les empreintes de pas de vertébrés du Trias de la bordure Nord-Est du Massif Central. Cah Paléont 1970:1–211

    Google Scholar 

  • Demathieu GR (1985) Trace fossil assemblages in Middle Triassic marginal marine deposits, eastern border of the Massif Central, France. Soc Econom Paleont Mineral Spec Publ 35:53–66

    Google Scholar 

  • Demathieu GR, Demathieu P (2004) Chirotheria and other ichnotaxa of the European Triassic. Ichnos 11:79–88

    Article  Google Scholar 

  • Demathieu GR, Oosterink HW (1988) New discoveries of ichnofossils from the Middle Triassic of Winterswijk (the Netherlands). Geol Mijnb 67:3–17

    Google Scholar 

  • Diedrich C (1998a) Stratigraphische Untersuchungen der Ichnofaziestypen einer neuer Wirbeltierfährtenfundstelle aus dem Unteren Muschelkalk des Teutoburger Waldes, NW-Deutschland. N Jb Geol Paläont Mh 1998:626–640

    Google Scholar 

  • Diedrich C (1998b) Vertebrate track ichnofacies types of the Oolith Member (Lower Muschelkalk, Middle Triassic) in the central Teutoburger Wald (NW-Germany) and their stratigraphical, facial and palaeogeographical significance. Zbl Geol Paläont I 1998(7–8):1–15

    Google Scholar 

  • Diedrich C (2000) Wirbeltierfährten aus dem Unteren Muschelkalk (Mitteltrias) des Osnabrücker Berglandes und Teutoburger Waldes (NW-Deutschland) und ihre stratigraphische und paläogeographische Bedeutung im Germanischen Becken. N Jb Geol Paläont Abh 217:369–395

    Google Scholar 

  • Diedrich C (2001) Vertebrate track bed stratigraphy of the upper Bunter and basal lower Muschelkalk (Middle Triassic) of Winterswijk (east Netherlands): Geol Mjinb 80: 31–39

  • Diedrich C (2002) Die Ausgrabungsergebnisse der Wirbeltierfährtenfundstelle aus der Oolith-Zone (Bithyn, Unterer Muschelkalk) von Borgholzhausen (Teutoburger Wald, NW-Deutschland): Paläont Z 76:35–56

  • Diedrich C (2005) Actuopalaeontological trackway experiments with Iguana on intertidal flat carbonates of the Arabian Gulf—a comparison to fossil Rhynchosauroides tracks of Triassic carbonate tidal flat megatracksites in the European Germanic Basin. Senckenb Maritima 35:203–220

    Article  Google Scholar 

  • Diedrich C (2008) Millions of reptile tracks—early to Middle Triassic carbonate tidal flat migration bridges of Central Europe. Palaeogeogr Palaeoclimatol Palaeoecol 259:410–423

    Article  Google Scholar 

  • Diedrich C (2009) Palaeogeographic evolution of the marine Middle Triassic marine Germanic Basin changements with emphasis on the carbonate tidal flat and shallow marine habitats of reptiles in Central Pangaea. Glob Planet Change 65:27–55

    Article  Google Scholar 

  • Diedrich C (2010) Dinosaur megatracksites in carbonate intertidal flats and their possible producers in the Cenomanian/Turonian of the Northern Tethys—coastal migration zones between Africa and Europe. Bull Tethys Geol Soc 5:63–84

    Google Scholar 

  • Diedrich C (2011a) Middle Triassic limulid crustacean reproduction intertidal flats of Europe and contribution to the variability of Kouphichnium Nopcsa, 1923 tracks—early Mesozoic limulid mating migrations into the Germanic Basin and reptile food chain reactions: Biol J Linn Soc London 103:76–105

  • Diedrich C (2011b) Upper Jurassic tidal flat megatracksites of Germany—coastal dinosaur migration highways between European islands, and a review of the dinosaur footprints. Palaeobiodivers Palaeoenviron 91(2):129–155

    Article  Google Scholar 

  • Diedrich C (2012a) Die Saurierspuren-Grabung im basalen Mittleren Muschelkalk (Anis, Mitteltrias) von Bernburg (Sachsen-Anhalt): Archäol Sachsen-Anhalt Sonderb 2009:1–63

  • Diedrich C (2012b) Middle Triassic chirotherid trackways on earthquake influenced intertidal limulid reproduction flats of the European Germanic Basin coasts. Cent Eur J Geosci 4:495–529

    Google Scholar 

  • Diedrich C (2013) Marine pachypleurosaur Serpianisaurus germanicus nov. spec. remains from the late Pelsonian (Middle Triassic) of the Germanic Basin in Europe. NM Museum Nat Hist Sci 61:159–168

    Google Scholar 

  • Diedrich C (2015) Chirotherium trackways and feeding traces on seismic influenced carbonate intertidals of the Middle Triassic of central Europe—global food chain reactions onto horseshoecrab reproduction mud flat beaches of the Germanic Basin. Carb Evap (accepted)

  • Diedrich C, Fichter J (2003) Eine erste Saurierfährten-Grabung im Unteren Muschelkalk (Anis, Mitteltrias) von Größenlüder, Nordhessen (NW-Deutschland). Philippia 11:109–132

    Google Scholar 

  • Diedrich C, Oosterink H (2000) Bergings- en documentatietechniek van Rhynchosauroides peabodyi (Faber)—Sauriersporen op de grens Boven- Buntsandsteen/Onder Muschelkalk van Winterswijk. Grond Hamer 54:125–130

    Google Scholar 

  • Diedrich C, Trostheide F (2007) Auf den Spuren der terresten Muschelkalksaurier und aquatischen Sauropterygier vom obersten Röt bis zum Mittleren Muschelkalk (Unter-/Mitteltrias) von Sachsen-Anhalt. Abh Ber Naturk Magdeburg 30:5–56

    Google Scholar 

  • Egerton W (1838) On two casts in sandstone of the impressions of the hind foot of a gigantic Chirotherium from the New Red Sandstone of Cheshire. Proc Geol Soc London 3:14–15

    Google Scholar 

  • Ewer RF (1965) The anatomy of the thecodont reptile Euparkeria capensis Broom. Philos Trans Roy SocLondon B 248:379–435

    Article  Google Scholar 

  • Faber FJ (1958) Fossiele voetstappen in de Muschelkalk van Winterswijk. Geol Mijnb NS 20:317–321

    Google Scholar 

  • Flugewicz R, Ptaszyliski T, Rdzanek K (1990) Lower Triassic footprints from the Swigtokrzyskie (Holy Cross) Mountains, Poland. Acta Palaeont Polonica 35:109–164

    Google Scholar 

  • Föhlisch K (2007) Überlieferungen seismischer Aktivität im Unteren Muschelkalk. Beitr Geol Thüringens NF 14:55–83

    Google Scholar 

  • Föhlisch K, Voigt T (2001) Synsedimentary deformation in the Lower Muschelkalk of the Germanic Basin. Spec Publ Int Assoc Sedimentol 31:279–297

    Google Scholar 

  • Gand G (1977) Sur le matériel ichnologique récolté dans le Muschelkalk de Culles-les-Roches. Bull Soc d’Hist Nat Creusot 35:21–44

    Google Scholar 

  • Gand G (1979) Description de deux nouvelles traces d’Isochirotherium observées dans le grès du Trias moyen de Bourgogne. Bull Soc d Hist Nat Creusot 37:13–25

    Google Scholar 

  • Gauthier JA, Nesbitt SJ, Schachner ER, Bever G, Joyce WG (2011) The bipedal stem crocodilian Poposaurus gracilis: inferring function in fossils and innovation in archosaur locomotion. Bull Peab Mus Nat Hist 52:107–126

    Article  Google Scholar 

  • Gower DJ, Schoch RR (2009) Postcranial anatomy of the rauisuchian archosaur Batrachotomus kupferzellensis. J Vert Paleont 29:103–122

    Article  Google Scholar 

  • Haubold H (1971a) Ichnia Amphibiorum et Reptiliorum Fossilium. Handb Paläoherpetol 18:1–124

    Google Scholar 

  • Haubold H (1971b) Die Tetrapodenfährten des Buntsandsteins in der Deutschen Demokratischen Republik und in Westdeutschland und ihre Äquivalente in der gesamten Trias. Paläont Abh A Paläozool 4:395–548

    Google Scholar 

  • Haubold H (1984) Saurierfährten. Neue Brehm Bücherei, Wittenberg Lutherstadt

    Google Scholar 

  • Haubold H (1999) Tracks of the Dinosauromorpha from the Lower Triassic. Zbl Geol Paläont I 1999:783–795

    Google Scholar 

  • Holst HKH, Smit J, Veenstra E (1970) Lacertoid footprints from the early Middle Triassic at Haarmühle, near Alstätte, W. Germany. Proc Koninkr Ned Akad Wetensch B 73:157–165

    Google Scholar 

  • King MJ, Benton MJ (1996) Dinosaurs in the early and mid Triassic?—the footprint evidence from Britain. Palaeogeogr Palaeoclimatol Palaeoecol 122:213–225

    Article  Google Scholar 

  • King MJ, Sarjeant WAS, Thompson DB, Tresise G (2005) A revised systematic ichnotaxonomy and review of the vertebrate footprint ichnofamily Chirotheriidae from the British Triassic. Ichnos 12:241–299

    Article  Google Scholar 

  • Klein H, Haubold H (2003) Differenzierung von ausgewählten Chirotherien der Trias mittels Landmarkanalyse. Hall Jb Geowissensch 25:21–36

    Google Scholar 

  • Klein H, Voigt S, Saber H, Schneider JW, Hminna A, Fischer J, Lagnaoui A, Brosig A (2011) First occurrence of a Middle Triassic tetrapod ichnofauna from the Argana Basin (Western High Atlas, Morocco). Palaeogeogr Palaeoclimatol Palaeoecol 307:218–231

    Article  Google Scholar 

  • Knaust D (1997) Die Karbonatrampe am SE-Rand des Persischen Golfes (Vereinigte Arabische Emirate)—rezentes Analogon für den Unteren Muschelkalk der Germanischen Trias? Greifsw Geowiss Beitr 5:101–123

    Google Scholar 

  • Knaust D (2000) Signatures of tectonically controlled sedimentation in Lower Muschelkalk carbonates (Middle Triassic) of the Germanic Basin. Zbl Geol Paläont I 1998:893–924

    Google Scholar 

  • Kozur HW, Bachmann GH (2008) Updated correlation of the Germanic Triassic with the Tethyan scale and assigned numeric ages. Ber Geol Bundesanst Wien 76:53–58

    Google Scholar 

  • Krebs B (1965) Ticinosuchus ferox n. g. n. sp. Schweiz Paläont Abh 81:1–141

    Google Scholar 

  • Kurze M (1981) Zum Problem der Entstehung von Wellenstrifen und Querplattung im Muschelkalk. Z dt geol Wissensch 9:489–499

    Google Scholar 

  • Langer MC, Benton MJ (2006) Early dinosaurs: a phylogenetic study. J Syst Palaeont 4:309–358

    Article  Google Scholar 

  • Langer MC, Ezcurra MD, Bittencourt JS, Novas FE (2010) The origin and early evolution of dinosaurs. Nature 464:95–98

    Article  Google Scholar 

  • Lucas SG (2007) Tetrapod footprint biostratigraphy and biochronology. Ichnos 14:5–38

    Article  Google Scholar 

  • Lucas SG, Heckert AB (2011) Late Triassic aetosaurs as the trackmaker of the tetrapod footprint ichnotaxon Brachychirotherium. Ichnos 8:197–208

    Article  Google Scholar 

  • Lukas V (1991) Die Terebratelbänke (Unterer Muschelkalk, Trias) in Hessen—ein Abbild kurzzeitiger Faziesänderungen im westlichen Germanischen Becken. Geol Jb Hessen 119:119–175

    Google Scholar 

  • Nesbitt S (2003) Arizonasaurus and its implications for archosaur divergence. Proc Roy Soc London B 270:234–237

    Article  Google Scholar 

  • Nesbitt S (2005) Osteology of the Middle Triassic pseudosuchian archosaur Arizonasaurus babbitti. Hist Biol 17:19–47

    Article  Google Scholar 

  • Nesbitt S (2007) The anatomy of Effigia okeeffeae (Archosauria, Suchia), theropod-like convergence, and the distribution of related taxa. Bull Am Mus Nat Hist 302:1–84

    Article  Google Scholar 

  • Nesbitt S (2011) The early evolution of archosaurs: relationships and the origin of major clades. Bull Am Mus Nat Hist 352:1–292

    Article  Google Scholar 

  • Nesbitt S, Sidor CA, Irmis RB, Angielcyk KD, Smith RMH, Tsuji LA (2010) Ecologically distinct dinosaurian sister group shows early diversification of Ornithodira. Nature 464:95–98

    Article  Google Scholar 

  • Oosterink HW, Berkelder W, Jong C, de Lankamp J, Winkelhorst H (2003) Sauriens uit de Onder-Muschelkalk van Winterswijk. Staringia 11:1–145

    Google Scholar 

  • Peabody FE (1948) Reptile and amphibian trackways from the Lower Triassic Moenkopi Formation of Arizona and Utah. Univ Calif Publ Geol Scie 27:295–468

    Google Scholar 

  • Pratt BR (1994) Seismites in the Mesoproterozoic Altyn Formation (Belt Supergroup), Montana: a test for tectonic control of peritidal carbonate cyclicity. Geology 22:1091–1094

    Article  Google Scholar 

  • Ptaszynski T (2000) Lower Triassic vertebrate footprints from Wlóry, Holy cross Mountains, Poland. Acta Palaeont Polon 45:151–194

    Google Scholar 

  • Riding R (2000) Microbial carbonates: the geological record of calcified bacterial–algal mats and biofilms. Sedimentology 47:179–214

    Article  Google Scholar 

  • Sachchi E, Conti MA, D’Orazi Porchetti S, Logoluso A, Nicosia U, Perugini G, Petti FM (2008) Aptian dinosaur footprints from the Apulian platform (Bisceglie, southern Italy) in the framework of periadriatic ichnosites. Palaeogeogr Palaeoclimat Palaeoecol 217:104–116

    Google Scholar 

  • Schwarz U (1975) Sedimentary structures and facies analysis of shallow marine carbonates (Lower Muschelkalk, Middle Triassic, SW-Germany). Contribo Sediment 3:1–100

    Google Scholar 

  • Sereno PC (1997) The origin and evolution of dinosaurs. Ann Rev Earth Planet Scie 25:435–489

    Article  Google Scholar 

  • Szulc J (1998) Anisian–Carnian evolution of the Germanic Basin and its eustatic, tectonic and climate controls: Zbl Geol Paläont I 7–8:813–852

  • Tverdokhlebov VP, Tverdokhlebova GI, Surkov MV, Benton MJ (2003) Tetrapod localities from the Triassic of the SE of European Russia. Earth Sci Rev 60:1–66

    Article  Google Scholar 

  • Valdiser D, Avanzini MA (2007) Tetrapod ichnoassociation from the Middle Triassic (Anisian, Pelsonian) of Northern Italy. Ichnos 14:105–116

    Article  Google Scholar 

  • Warren JK (1989) Evaporite sedimentology. Prentice Hall Inc., New Jersey

    Google Scholar 

  • Welles SP (1947) Vertebrates from the Upper Moenkopi formation of the northern Arizona. UnivCalif Publ Geol Sci 27:241–294

    Google Scholar 

Download references

Acknowledgments

First, I thank Prof. Dr. M. Benton for a critical scientific support and language spell check, such as many comments. I thank the Landesamt für Denkmalpflege und Archäologie Saxony-Anhalt, and in particular Prof. Dr. H. Meller and Prof. Dr. J.-H. Olbertz, the former Minister of Education and Culture of Saxony-Anhalt, for their support and for financing the excavations. I am also grateful to Dr. S. Friederich for coordinating the large surface excavation campaign. The excavation 2010 was sponsored by the Bernburger Freizeit GMBH of the city Bernburg due to main activities of the mayor H. Schultka and the manager R. Reichelt. This excavation was supported in the logistics by Dr. R. Wiermann of the Museum Schloss Bernburg, which museum keeps all material of the 2010 project. I thank Solvay Chemicals (especially J. Lischka) for support and permits for excavations in their quarry. Parts of the research were funded by the Solvay Chemicals GmbH. Comparisons to other Isochirotherium tracks from the German Buntsandstein redbeds were made possible by the Martin-Luther-Universität Halle-Wittenberg (curator Dr. N. Hauschke), and Museum of the Humboldt-University Berlin (curator PD Dr. O. Hampe), such as Senckenbergmuseum Frankfurt. I thank Prof Dr. G. H. Bachmann and Dr. N. Hauschke for their scientific support and discussions. I thank the Museum in Phoenix, Arizona for permission to use the Arizonasaurus skeleton photo. Finally, I thank A. Hass and E. Werner who produced the 3D-model for the ARTE documentary film “Saurier Code” which was performed by Hofrichter und Jacobs under scientific consulting of the author (company PaleoLogic) in 2011. The research was sponsored by the private research institute PaleoLogic (http://www.paleologic.eu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cajus Diedrich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diedrich, C. Isochirotherium trackways, their possible trackmakers (?Arizonasaurus): intercontinental giant archosaur migrations in the Middle Triassic tsunami-influenced carbonate intertidal mud flats of the European Germanic Basin. Carbonates Evaporites 30, 229–252 (2015). https://doi.org/10.1007/s13146-014-0228-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13146-014-0228-z

Keywords

Navigation