Skip to main content
Log in

Satellite and ground-based remote sensing of aerosols during intense haze event of October 2013 over lahore, Pakistan

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Due to increase in population and economic development, the mega-cities are facing increased haze events which are causing important effects on the regional environment and climate. In order to understand these effects, we require an in-depth knowledge of optical and physical properties of aerosols in intense haze conditions. In this paper an effort has been made to analyze the microphysical and optical properties of aerosols during intense haze event over mega-city of Lahore by using remote sensing data obtained from satellites (Terra/Aqua Moderate-resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)) and ground based instrument (AErosol RObotic NETwork (AERONET)) during 6-14 October 2013. The instantaneous highest value of Aerosol Optical Depth (AOD) is observed to be 3.70 on 9 October 2013 followed by 3.12 on 8 October 2013. The primary cause of such high values is large scale crop residue burning and urban-industrial emissions in the study region. AERONET observations show daily mean AOD of 2.36 which is eight times higher than the observed values on normal day. The observed fine mode volume concentration is more than 1.5 times greater than the coarse mode volume concentration on the high aerosol burden day. We also find high values (~0.95) of Single Scattering Albedo (SSA) on 9 October 2013. Scatter-plot between AOD (500 nm) and Angstrom exponent (440-870 nm) reveals that biomass burning/urban-industrial aerosols are the dominant aerosol type on the heavy aerosol loading day over Lahore. MODIS fire activity image suggests that the areas in the southeast of Lahore across the border with India are dominated by biomass burning activities. A Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model backward trajectory showed that the winds at 1000 m above the ground are responsible for transport from southeast region of biomass burning to Lahore. CALIPSO derived sub-types of aerosols with vertical profile taken on 10 October 2013 segregates the wide spread aerosol burden as smoke, polluted continental and dust aerosols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alam, K., M. J. Iqbal, T. Blaschke, S. Qureshi, and G. Khan, 2010: Monitoring spatiotemporal variations in aerosols and aerosol-cloud interactions over Pakistan using MODIS data. Adv. Space Res., 46, 1162–1176.

    Article  Google Scholar 

  • Alam, K., N. Sahar, and I. Yaseen, 2014: Aerosol Characteristics and Radiative Forcing during Pre-Monsoon and Post-Monsoon Seasons in an Urban Environment. Aerosol Air Qual. Res., 14, 99–107.

    Google Scholar 

  • Ali, M., S. Tariq, K. Mahmood, A. Daud, A. Batool, and Z. Haq, 2014: A study of aerosol properties over Lahore (Pakistan) by using AERONET data. Asia-Pac. J. Atmos. Sci., 50, 153–162, doi:10.1007/s13143-014-0004-y.

    Article  Google Scholar 

  • Arola, A., A. Lindfors, A. Natunen, and K. E. J. Lehtinen, 2007: A case study on biomass burning aerosols: effects on aerosol optical properties and surface radiation levels. Atmos. Chem. Phys., 7, 4257–4266.

    Article  Google Scholar 

  • Arola, A., G. Schuster, G. Myhre, S. Kazadzis, S. Dey, and S. N. Tripathi, 2011: Inferring absorbing organic carbon content from AERONET data, Atmos. Chem. Phys., 11, 215–225, doi:10.5194/acp-11-215-2011.

    Google Scholar 

  • Bowman, D. M. J. S., and Coauthors, 2009. Fire in the Earth System. Science, 324(5926), 481–484.

    Article  Google Scholar 

  • Cachier, H., C. Liousse, P. Buatmenard, and A. Gaudichet, 1995: Particulate Content of Savanna Fire Emissions. J. Atmos. Chem. 22, 123–148.

    Article  Google Scholar 

  • Cheng, Z., and Coauthors, 2014: Impact of biomass burning on haze pollution in the Yangtze River delta, China: a case study in summer 2011. Atmos. Chem. Phys., 14, 4573–4585.

    Article  Google Scholar 

  • Cheng, Y., A. Wiedensohler, H. Eichler, J. Heintzenberg, M. Tesche, A. Ansmann, M. Wendisch, H. Su, D. Althausen, and H. Herrmann, 2008: Relative humidity dependence of aerosol optical properties and direct radiative forcing in the surface boundary layer at Xinken in Pearl River Delta of China: An observation based numerical study. Atmos. Environ., 42, 6373–6397.

    Article  Google Scholar 

  • Crutzen, P. J. and M. O. Andreae, 1990: Biomass burning in the tropics impact on atmospheric chemistry and biogeochemical cycles. Science, 250(4988), 1669–1678.

    Article  Google Scholar 

  • Da Rocha, G. O., A. G. Allen, and A. A. Cardoso, 2005: Influence of agricultural biomass burning on aerosol size distribution and dry deposition in southeastern Brazil. Environ. Sci. Technol., 39(14), 5293–5301.

    Article  Google Scholar 

  • Dey, S., and S. N. Tripathi, 2007: Estimation of aerosol optical properties and radiative effects in the Ganga basin, northern India, during the wintertime. J. Geophys. Res., 112, D03203, doi:10.1029/2006JD007267.

    Google Scholar 

  • Draxler, R. R., and G. D. Hess, 1998: Description of the Hysplit_4 Modeling System. NOAA Technical Memorandum ERL ARL-224, NOAA Air Resources Laboratory, Silver Spring, Maryaland: USA. [Available online at http://www.arl.noaa.gov/ready/hysplit4.html.]

    Google Scholar 

  • Duan, F., X. Liu, T. Yu, and H. Cachier, 2004: Identification and estimate of biomass burning contribution to the urban aerosol organic carbon concentrations in Beijing. Atmos. Environ., 38, 1275–1282.

    Article  Google Scholar 

  • Dubovik, O., and M. D. King, 2000: A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements. J. Geophys. Res., 105, 20673–20696.

    Article  Google Scholar 

  • Dubovik, O., B. N. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanre, and I. Slutsker, 2002: Climatology of atmospheric aerosol absorption and optical properties in key locations. J. Atmos. Sci., 59, 590–608.

    Article  Google Scholar 

  • Eck, T. F., B. N. Holben, J. S. Reid, O. Dubovik, A. Smirnov, N. T. O’Neill, I. Slutsker, and S. Kinne, 1999: Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res., 104, 31, 333–31, 349.

    Google Scholar 

  • Eck, T. F., B. N. Holben, O. Dubovic, A. Smirnov, I. Slutsker, J. M. Lobert, and V. Ramanathan, 2001: Column integrated Aerosol Optical Properties over the Maldives during the Northeast Monsoon for 1998-2000. J. Geophys. Res., 106, 28555–28566.

    Article  Google Scholar 

  • Eck, T. F., B. N. Holben, J. S. Reid, N. T. O'Neill, J. S. Schafer, O. Dubovik, A. Smirnov, M. A. Yamasoe, and P. Artaxo, 2003: High aerosol optical depth biomass burning events: a comparison of optical properties for different source regions. Geophys. Res. Lett., 30, 2035.

    Article  Google Scholar 

  • Eck, T. F., and Coauthors, 2009: Optical properties of boreal region biomass burning aerosols in central Alaska and seasonal variation of aerosol optical depth at an Arctic coastal site. J. Geophys. Res., 114, D11201, doi:10.1029/2008JD010870.

    Article  Google Scholar 

  • Giles, D. M., and Coauthors, 2011: Aerosol Properties over the Indo- Gangetic Plain: A 1 Mesoscale Perspective from the TIGERZ Experiment. J. Geophys. Res., 116, D18203.

    Article  Google Scholar 

  • Hao, W. M., and M. H. Liu, 1994: Spatial and temporal distribution of biomass burning. Global Biogeochem. Cycles, 8, 495–503.

    Article  Google Scholar 

  • Holben, B. N., and Coauthors, 1998: AERONET-A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66, 1–16.

    Article  Google Scholar 

  • Hoppel, W. A., J. W. Fitzgerald, and R. E. Larson, 1985: Aerosol size distributions in air masses advecting off the east coast of the United States. J. Geophys. Res., 90, 2365–2379.

    Article  Google Scholar 

  • IPCC, Intergovernmental Panel on Climate Change(IPCC). 2001: Climate change 2001. The Scientific Basis.

  • Jacobson, M. Z., 2001: Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature, 409, 695–697.

    Article  Google Scholar 

  • Kang, H. B. Zhu, J. Su, H. Wang, Q. Zhang, F. Wang, 2013: Analysis of a long-lasting haze episode in Nanjing, China. Atmos. Res., 120, 78–87.

    Article  Google Scholar 

  • Kannemadugu, H. R. S., A. O. Varghese, S. R. Mukkara, A. K. Joshil, and S. V. Moharil, 2015: Discrimination of Aerosol Types and Validation of MODIS Aerosol and Water Vapour Products Using a Sun Photometer over Central India. Aerosol Air Qual. Res., 15, 682–693.

    Google Scholar 

  • Kaskaoutis, D. G. and H. D. Kambezidis, 2006: Investigation on the wavelength dependence of the aerosol optical depth in the Athens area. Q. J. R. Meteorol. Soc., 132, 2217–2234.

    Article  Google Scholar 

  • Kaskaoutis, D. G., H. D. Kambezidis, N. Hatzianastassiou, P. Kosmopoulos, and K. V. S. Badarinath, 2007: Aerosol Climatology: On the Discrimination of the Aerosol Types over Four AERONET Sites. Atmos. Chem. Phys., 7, 6357–6411.

    Article  Google Scholar 

  • Kaskaoutis, D. G., K. V. S. Badarinath, S. K. Kharol, A. R. Sharma, and H. D. Kambezidis, 2009: Variations in the Aerosol Optical Properties and Types over the Tropical Urban Site of Hyderabad, India. J. Geophys. Res., 114, D22204.

    Article  Google Scholar 

  • Kaskaoutis, D. G., S. K. Kharol, N. Sifakis, P. T. Nastos, A. R. Sharma, K. V. S. Badarinath, H. D. Kambezidis, 2011: Satellite monitoring of the biomass-burning aerosols during the wildfires of August 2007 in Greece: climate implications. Atmos. Environ., 45, 716–726.

    Article  Google Scholar 

  • Kaufman, Y. J., and D. Tanré, 1998: Algorithm for Remote Sensing of Tropospheric Aerosol from MODIS, Algorithm Theoretical Basis Document. ATBD-MOD-02, NASA Goddard Space Flight Center 85.

    Google Scholar 

  • Koe, L. C. C., A. F. Arellano, and J. L. McGregor, 2001: Investigating the haze transport from 1997 biomass burning in Southeast Asia: its impact upon Singapore, Atmos. Environ., 35(15), 2723–2734.

    Google Scholar 

  • Kuang, Y., C. S. Zhao, J. C. Tao, and N. Ma, 2015: Diurnal variations of aerosol optical properties in the North China Plain and their influences on the estimates of direct aerosol radiative effect. Atmos. Chem. Phys., 15, 5761–5772, doi:10.5194/acp-15-5761-2015.

    Article  Google Scholar 

  • Kumar, K. R., V. Sivakumar, R. R. Reddy, K. R. Gopal, and A. J. Adesinal, 2014: Identification and Classification of Different Aerosol Types over a Subtropical Rural Site in Mpumalanga, South Africa: Seasonal Variations as Retrieved from the AERONET Sunphotometer, Aerosol Air Qual. Res., 14, 108–123.

    Google Scholar 

  • Lai, L. Y. and R. Sequeira, 2001: Visibility degradation across Hong Kong: its components and their relative contributions, Atmos. Environ., 35, 5861–5872, doi:10.1016/S1352-2310(01)00395-8.

    Google Scholar 

  • Lau, K. M. and K. M. Kim, 2006: Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophys. Res. Lett., doi:10.1029/2006GL027546.

    Google Scholar 

  • Lau, K. M., M. K. Kim, and K. M. Kim, 2006: Asian summer monsoon anomalies induced by aerosol direct forcing: The role of the Tibetan Plateau. Clim. Dyn., 26, 855–864.

    Article  Google Scholar 

  • Lau, K. M., V. Ramanathan, G.-X. Wu, Z. Li, S. Tsay, C. Hsu, R. Sikka, B. Holben, D. Lu, and G. Tartari, 2008: The joint aerosol-monsoon experiment. Bull. Am. Meteorol. Soc., 89, 369–383.

    Article  Google Scholar 

  • Lee, K. H. Y. J. Kim, M. J. Kim, 2006: Characteristics of aerosols observed during two severe haze events over Korea in June and October 2004. Atmos. Environ. 40, 5146–5155.

    Article  Google Scholar 

  • Levy, R. C., L. A. Remer, and O. Dubovik, 2007: Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land. J. Geophys. Res., 112, D13210.

    Google Scholar 

  • Li, W. J. and L. Y. Shao, 2009: Transmission electron microscopy study of aerosol particles from the brown hazes in northern China. J. Geophys. Res., 114(D09), doi:10.1029/2008JD011285.

    Google Scholar 

  • Li, W. J., L. Shao, and P. Buseck, 2010: Haze types in Beijing and the influence of agricultural biomass burning. Atmos. Chem. Phys., 10, 8119–8130.

    Article  Google Scholar 

  • Markowicz, K. M., P. J. Flatau, P. K. Quinn, C. M. Carrico, M. K. Flatau, A. M. Vogelmann, D. Bates, M. Liu, and M. J. Rood, 2003: Influence of relative humidity on aerosol radiative forcing: An ACE-Asia experiment perspective. J. Geophys. Res., 108, 8662, doi:10.1029/2002JD-003066.

    Article  Google Scholar 

  • Mishra, A. K., and T. Shibata, 2012: Synergistic analyses of optical and microphysical properties of agricultural crop residue burning aerosols over the Indo-Gangetic Basin (IGB). Atmos. Environ., 57, 205–218.

    Article  Google Scholar 

  • Niemi, J. V., H. Tervahattu, H. Vehkamaki, J. Martikainen, L. Laakso, M. Kulmala, P. Aarnio, T. Koskentalo, M. Sillanpaa, and U. Makkonen, 2005: Characterization of aerosol particle episodes in Finland caused by wildfires in Eastern Europe. Atmos. Chem. Phys., 5, 2299–2310, doi: 10.5194/acp-5-2299-2005.

    Article  Google Scholar 

  • Pakszys, P., and Coauthors, 2015: Annual Changes of Aerosol Optical Depth and Ångström Exponent over Spitsbergen. Impact of Climate Changes on Marine Environments, GeoPlanet: Earth and Planetary Sciences, Springer International Publishing, pp 23–36.

    Google Scholar 

  • Pal, S., 2014: Monitoring Depth of Shallow Atmospheric Boundary Layer to Complement LiDAR Measurements Affected by Partial Overlap. Remote Sens., 6(9), 8468–8493.

    Article  Google Scholar 

  • Pal, S., and P. C. S. Devara, 2012: A wavelet-based spectral analysis of long-term time series of optical properties of aerosols obtained by lidar and radiometer measurements over an urban station in Western India. J. Atmos. Sol.-Terr. Phys., 84-85, 75–87.

    Article  Google Scholar 

  • Pal, S., T. R. Lee, S. Phelps, and S. F. J. De Wekker, 2014a: Impact of atmospheric boundary layer depth variability and wind reversal on the diurnal variability of aerosol concentration at a valley site. Sci. Total Environ., 496, 424–434.

    Article  Google Scholar 

  • Pal, S., M. Lopez, M. Schmidt, M. Ramonet, F. Gibert, I. Xueref-Remy, and P. Ciais, 2014b: Investigation of the atmospheric boundary layer depth variability and its impact on the 222Rn concentration at a rural site in France: Evaluation of a year-long measurement. J. Geophys. Res.-Atmos., doi: 10.1002/2014JD022322.

    Google Scholar 

  • Pinker, R. T., B. Zhang, and E. G. Dutton, 2005: Do satellites detect trends in surface solar radiation. Science, 308, 850–854, doi:10.1126/science.1103159.

    Article  Google Scholar 

  • Ramanathan, V., C. Chung, D. Kim, T. Bettge, L. Buja, J. T. Kiehl, W. M. Washington, Q. Fu, D. R. Sikka, and M. Wild, 2005: Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle. Proc. Natl. Acad. Sci., 102, 5326–5333.

    Article  Google Scholar 

  • Ramanathan, V., M. V. Ramana, G. Roberts, D. Kim, C. Corriganm, C. Chung, and D. Winker, 2007: Warming trends in Asia amplified by brown cloud solar absorption. Nature, 448, 575–578.

    Article  Google Scholar 

  • Reid, J. S. and P. V. Hobbs, 1998: Physical and Optical Properties of Smoke from Individual Biomass Fires in Brazil. J. Geophys. Res., 103, 32013–32031.

    Article  Google Scholar 

  • Reid, J. S., T. F. Eck, S. A. Christopher, R. Koppmann, O. Dubovik, D. P. Eleuterio, B. N. Holben, E. A. Reid, and J. Zhang, 2005: A Review of Biomass Burning Emissions Part III: Intensive Optical Properties of Biomass Burning Particles. Atmos. Chem. Phys., 5, 827–849.

    Article  Google Scholar 

  • Remer, L. A., Y. J. Kaufman, B. N. Holben, A. M. Thompson, and D. McNamara, 1998: Biomass Burning Aerosol Size Distribution and Modeled Optical Properties. J. Geophys. Res., 103, 31879–31891.

    Article  Google Scholar 

  • Remer, L. A., and Coauthors, 2005: The MODIS aerosol algorithm, products and validation. J. Atmos. Sci., 62, 947–973.

    Article  Google Scholar 

  • Satheesh, S. K., and K. K. Moorthy, 2005: Radiative effects of natural aerosols: A review. Atmos. Environ., 39, 2089–2110, doi:10.1016/j.atmosenv.2004.12.029.

    Article  Google Scholar 

  • Sharma, M., D. G. Kaskaoutis, R. P. Singh, and S. Singh, 2014: Seasonal variability of atmospheric aerosol parameters over Greater Noida using ground sunphotometer observations. Aerosol Air Qual. Res., 14, 608–622.

    Google Scholar 

  • Smirnov, A., B. N. Holben, T. F. Eck, O. Dubovik, and I. Slutsker, 2000: Cloud screening and quality control algorithms for the AERONET data base. Remote Sens. Environ., 73, 337–349.

    Article  Google Scholar 

  • Streets, D. G., L. Hedayat, G. R. Carmichael, R. L. Arndt, and L. D. Carter, 1999: Potential for advanced technology to improve air quality and human health in Shanghai. Environ. Management, 23, 279–295.

    Article  Google Scholar 

  • Streets, D. G., S. K. Guttikunda, and G. R. Carmichael, 2000: The growing contribution of sulfur emissions from ships in Asian waters. Atmos. Environ., 34, 4425–4439.

    Article  Google Scholar 

  • Sun, Y. L., G. S. Zhuang, A. H. Tang, Y. Wang, and Z. S. An, 2006: Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing. Environ. Sci. Technol., 40, 3148–3155, doi:10.1021/Es051533g.

    Article  Google Scholar 

  • Tan, J.-H., J.-C. Duan, D.-H. Chen, X.-H. Wang, S.-J. Guo, X.-H. Bi, G.-Y. Sheng, K.-B. He, J.-M. Fu, 2009: Chemical characteristics of haze during summer and winter in Guangzhou. Atmos. Res., 94, 238–245.

    Article  Google Scholar 

  • Toledano, C., V. E. Cachorro, A. Berjon, A. M. de Frutos, M. Sorribas, B. A. de la Morena, and P. Goloub, 2007: Aerosol optical depth and angstrom exponent climatology at El Arenosillo AERONET site (Huelva, Spain). Quart. J. Roy. Meteor. Soc., 133, 795–807.

    Article  Google Scholar 

  • Vadrevu, K. P., E. Ellicott, K. V. S. Badarinath, and E. Vermote, 2011: MODIS derived fire characteristics and aerosol optical depth variations during the agricultural residue burning season, north India. Environ. Pollut., 159, 1560–1569.

    Article  Google Scholar 

  • Valdebenito, B., A. Behrendt, S. Pal, V. Wulfmeyer, A. M. B. Valdebenito, and G. Lammel, 2011: A novel approach for the characterization of transport and optical properties of aerosol particles emitted from an animal facility—Part II: High-resolution chemistry transport model and its assessment using Lidar measurements. Atmos. Environ, 45, 2981–2990.

    Article  Google Scholar 

  • Verma, S., D. Prakash, P. Ricaud, S. Payra, J. Attié, and M. Soni, 2015: A New Classification of Aerosol Sources and Types as Measured over Jaipur, India. Aerosol Air Qual. Res., 15, 985–993.

    Google Scholar 

  • Vijayakumar, K., and P. C. S. Devara, 2014: Optical exploration of biomass burning aerosols over a high-altitude station by combining ground-based and satellite data. J. Aerosol Sci., 72, 1–13.

    Article  Google Scholar 

  • Wenig, M., N. Spichtinger, A. Stohl, G. Held, S. Beirle, T. Wagner, B. Jaähne, and U. Platt, 2003: Intercontinental transport of nitrogen oxide pollution plumes. Atmos. Chem. Phys., 3, 387–393.

    Article  Google Scholar 

  • Winker, D., W. H. Hunt, and M. J. McGill, 2007: Initial performance assessment of CALIOP. Geophys. Res. Lett., 34, L19803.

    Article  Google Scholar 

  • Yu, X., B. Zhu, Y. Yin, S. Fan, and A. Chen, 2011: Seasonal variation of columnar aerosol optical properties in Yangtze River Delta in China. Adv. Atmos. Sci., 28, 1326–1335.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salman Tariq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tariq, S., Zia, uH. & Ali, M. Satellite and ground-based remote sensing of aerosols during intense haze event of October 2013 over lahore, Pakistan. Asia-Pacific J Atmos Sci 52, 25–33 (2016). https://doi.org/10.1007/s13143-015-0084-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-015-0084-3

Key words

Navigation