Skip to main content
Log in

Sensitivity of simulated intraseasonal oscillation to four convective parameterization schemes in a coupled climate model

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

This paper investigates the sensitivity of a simulated tropical precipitation climatology focusing on the intraseasonal oscillation (ISO) to four convective parameterization schemes: simplified Arakawa-Schubert (SAS), relaxation Arakawa-Schubert (RAS), new Kain-Fritsch (KF2), National Center for Atmospheric Research (NCAR) Climate Model version 3 (CCM). An 8-year boreal summer climatology from 1997 to 2004 is constructed using an ocean-atmosphere coupled global climate model (GCM). The simulated tropical precipitation climatology shows that all four experiments capture the observed climatology fairly well, with the pattern correlation coefficients greater than 0.8. The ensemble mean of results from the four experiments does not reveal a benefit in reproducing the observed precipitation climatology or the ISO signals. Although the KF2 scheme has been most widely tested and updated in mesoscale modeling communities, its capability in tropical climate simulation is shown to be relatively good in terms of sea surface temperature (SST) and precipitation. Results from the SAS and KF2 schemes show similar patterns in terms of climatology and ISO signals, with a greater precipitation variance than that from other experiments. The ISO signals from the RAS run show relatively realistic ISO signals, but with too strong intensity. Our study implies that the appropriate partitioning of deep convection due to cumulus parameterization scheme and stratiform precipitation due to microphysics scheme should be taken into account when developing or revising physics algorithms in coupled GCMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large scale environment. Part I: J. Atmos. Sci., 31, 674–701.

    Article  Google Scholar 

  • Bellon, B., A. Sobel, and J. P. Vialard, 2008: Ocean-atmosphere coupling in the monsoon intraseasonal oscillation: A simple model study. J. Climate, 21, 5254–5270.

    Article  Google Scholar 

  • Bessafi, M., and M. C. Wheeler, 2006: Modulation of South Indian Ocean tropical cyclones by the Madden-Julian oscillation and convectively coupled equatorial waves. Mon. Wea. Rev., 134, 638–656.

    Article  Google Scholar 

  • Byun, U.-Y., S.-Y. Hong, H. Shin, J.-W. Lee, J.-I. Song, S.-J. Hahm, J.-K. Kim, H.-W. Kim, and J.-S. Kim, 2011: WRF-based Short-Range Forecast System of the Korea Air Force: Verification of prediction skill in 2009 summer. Atmosphere, 21(2), 197–208. (in Korean with English abstract).

    Google Scholar 

  • Chao, W. C. and L. Deng, 1998: Tropical intraseasonal oscillation, super cloud clusters, and cumulus convection schemes. Part II: 3D aquaplanet simulation. J. Atmos. Sci., 54, 2429–2440.

    Article  Google Scholar 

  • Chen, S. S., R. A. Houze, and B. E. Mapes, 1996: Multiscale variability of deep convection in relation to large-scale circulation in TOGA COARE. J. Atmos. Sci., 53, 1380–1409.

    Article  Google Scholar 

  • Cheong, H.-B., 2006: A dynamical core with double fourier series: comparison with the spherical harmonics method. Mon. Wea. Rev., 134, 1299–1315.

    Article  Google Scholar 

  • Chou, M.-D., and M. J. Suarez, 1999: A solar radiation parameterization for atmospheric studies. Vol. 15, NASA/TM-1999-104606, 38 pp.

  • _____, and K.-T. Lee, 2005: A parameterization of the effective layer emission for infrared radiation calculation. J. Atmos. Sci., 62, 531–541.

    Article  Google Scholar 

  • _____, ______, S.-C. Tsay, and Q. Fu, 1999: Parameterization for cloud longwave scattering for use in atmospheric models. J. Climate, 12, 159–169.

    Article  Google Scholar 

  • Chun, H.-Y., and J.-J. Baik, 1998: Momentum flux by thermally induced internal gravity waves and its approximation for large-scale models. J. Atmos. Sci., 55, 3299–3310.

    Article  Google Scholar 

  • Frank, W. M., and P. E. Roundy, 2006: The role of tropical waves in tropical cyclogenesis. Mon. Wea. Rev., 134, 2397–2417.

    Article  Google Scholar 

  • Flatau, M., P. Flatau, P. Phoebus, and P. Niiler, 1997: The feedback between equatorial convection and local radiative and evaporative processes: The implications for intraseasonal oscillations. J. Atmos. Sci., 54, 2373–2386.

    Article  Google Scholar 

  • Fu, X., B. Yang, G. Bao, and B. Wang, 2008: Sea surface temperature feedback extends the predictability of tropical intraseasonal oscillation. Mon. Wea. Rev., 136, 577–597.

    Article  Google Scholar 

  • _____, and B. Wang, 2009: Critical roles of the stratiform rainfall in sustaining the Madden-Julian oscillation: GCM experiments. J. Climate, 22, 3939–3959.

    Article  Google Scholar 

  • Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterization. Mon. Wea. Rev., 121, 764–787.

    Article  Google Scholar 

  • Hayashi, Y., 1979: A generalized method of resolving transient disturbances into standing and traveling waves by space-time spectral analysis. J. Atmos. Sci., 36, 1017–1029.

    Article  Google Scholar 

  • Hendon, H. H., 2000: Impact of air-sea coupling on the Madden-Julian oscillation in a general circulation model. J. Atmos. Sci., 57, 3939–3952.

    Article  Google Scholar 

  • Hong, S.-Y., and H.-L. Pan, 1998: Convective trigger function for mass flux cumulus parameterization scheme. Mon. Wea. Rev., 126, 2599–2620.

    Article  Google Scholar 

  • _____, H.-M. H. Juang, and Q. Zhao, 1998: Implementation of prognostic cloud scheme for a regional spectral model. Mon. Wea. Rev., 126, 2621–2639.

    Article  Google Scholar 

  • _____, Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341.

    Article  Google Scholar 

  • _____, ______, and E.-C. Chang, 2012: Spectral nudging sensitivity experiments in a regional climate model. Asia-Pacific J Atmos Sci., 48, 345–355.

    Article  Google Scholar 

  • _____, and Coauthors, 2013: The Global/Regional Integrated Model system (GRIMs). Asia-Pacific J. Atmos. Sci., 49(2), 219–243.

    Article  Google Scholar 

  • Huffman, G. J., R. F. Adler, M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 36–50.

    Article  Google Scholar 

  • Inness, P. M., and J. M. Slingo, 2003: Simulation of the Madden-Julian oscillation in a coupled general circulation model. Part I: Comparison with observations and an atmosphere-only GCM. J. Climate, 16, 345–364.

    Article  Google Scholar 

  • _____, ______, E. Guilyardi, and J. Cole, 2003: Simulation of the Madden-Julian oscillation in a coupled general circulation model. Part II: The role of the basic state. J. Climate, 16, 365–382.

    Article  Google Scholar 

  • Jeon J.-H., S.-Y. Hong, H.-Y. Chun, and I.-S. Song, 2010: Test of a convectively forced gravity wave drag parameterization in a general circulation model. Asia-Pacif J. Atmos Sci., 46, 1–10.

    Article  Google Scholar 

  • Jones, C., 2000: Occurrence of extreme precipitation events in California and relationships with the Madden-Julian oscillation. J. Climate, 13, 3576–3587.

    Article  Google Scholar 

  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 33, 1890–1910.

    Google Scholar 

  • _____, 2004: The Kain-Fritsch convective parameterization: An update, J. Appl. Meteorol., 43, 170–181.

    Article  Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project, Bull. Amer. Meteor. Soc., 77, 437–471.

    Article  Google Scholar 

  • Kanamitsu, M., and Coauthors, 2002a: NCEP Dynamical Seasonal Forecast System 2000. Bull. Amer. Meteor. Soc., 83, 1019–1037.

    Article  Google Scholar 

  • _____, W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002b: NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1643.

    Article  Google Scholar 

  • Kang, H.-S., and S.-Y. Hong, 2008: Sensitivity of the simulated East Asian summer monsoon climatology to four convective parameterization schemes. J. Geophys. Res., 113, D15119, doi:10.1029/2007JD009692.

    Article  Google Scholar 

  • Kara, A. B., P. A. Rochford, and H. E. Hurlburt, 2003: Mixed layer depth variability over the global ocean. J. Geophys. Res., 108(C3), 3079, doi: 10.1029/2000JC 000736.

    Article  Google Scholar 

  • Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden-Julian oscillation. J. Atmos. Sci., 62, 2790–2809.

    Article  Google Scholar 

  • Kim, D., and Coauthors, 2009: Application of MJO simulation diagnostics to climate models. J. Climate, 22, 6413–6436.

    Article  Google Scholar 

  • Kim, E.-J., and S.-Y. Hong, 2010: Impact of air-sea interaction on East Asian summer monsoon climate in WRF. J. Geophys. Res., 115, D19118, doi:10.1029/2009JD013253.

    Article  Google Scholar 

  • Kim, Y.-J., and A. Arakawa, 1995: Improvement of orographic gravity wave parameterization using a mesoscale gravity wave model. J. Atmos. Sci., 52, 1875–1902.

    Article  Google Scholar 

  • Lawrence, D. M., and P. J. Webster, 2002: The boreal summer intraseasonal oscillation: Relationship between northward and eastward movement of convection. J. Atmos. Sci., 59, 1593–1606.

    Article  Google Scholar 

  • Lee, M.-I., I.-S. Kang, and B. E. Mapes, 2003: Impacts of cumulus convection parameterization on aqua-planet AGCM simulations of tropical intraseasonal variability. J. Meteor. Soc. Japan, 81, 963–992.

    Article  Google Scholar 

  • Lin, J.-L, and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 2665–2690.

    Article  Google Scholar 

  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702–708.

    Article  Google Scholar 

  • Maloney, E. D., and P. R. Julian, 2001: The sensitivity of intraseasonal variability in the NCAR CCM3 to changes in convective parameterization. J. Climate, 14, 2015–2034.

    Article  Google Scholar 

  • Mo, K. C., and R. W. Higgins, 1998: Tropical influences on California precipitation. J. Climate, 11, 412–430.

    Article  Google Scholar 

  • Moorthi, S. and M. J. Suarez, 1992: Relaxed Arakawa-Schubert: a parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120, 978–1002.

    Article  Google Scholar 

  • Pacanowski, R. C., and S. M. Griffies, 1998: MOM 3.0 manual. NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ, 668 pp.

    Google Scholar 

  • Pan, H.-L., and W.-S. Wu, 1995: Implementing a mass flux convective parameterization package for the NMC medium-range forecast model, in NMC Office Note 409, 40 pp., NCEP/EMC, Camp Springs, Md.

    Google Scholar 

  • Park, H., and S.-Y. Hong, 2007: An evaluation of a mass-flux cumulus parameterization scheme in the KMA Global Forecast System. J. Meteor. Soc. Japan, 85(2), 151–169.

    Article  Google Scholar 

  • Park, S., S.-Y. Hong, and Y.-H. Byun, 2010: Precipitation in boreal summer simulated by a GCM with two convective parameterization scheme: Implications of the intraseasonal oscillation for dynamic seasonal prediction. J. Climate, 23, 2801–2816.

    Article  Google Scholar 

  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analysis using optimum interpolation. J. Climate, 7, 929–948.

    Article  Google Scholar 

  • Ridout, J. A., Y. Jin, and C.-S. Liou, 2005: A cloud-base quasi-balance onstraint for parameterized convection: Application to the Kain-Fritsch cumulus scheme. Mon. Wea. Rev., 133, 3315–3334.

    Article  Google Scholar 

  • Roeckner, E., and Coauthors, 1996: The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. MPI Rep., 218, 94 pp.

    Google Scholar 

  • Seo, K.-H., and W. Wang, 2010: The Madden-Julian oscillation simulated in the NCEP climate forecast system model: The importance of stratiform heating. J. Climate, 23, 4770–4793.

    Article  Google Scholar 

  • Skamarock, W. C., and Coauthors, 2008: A description of the advanced research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp.

    Google Scholar 

  • Sperber, K. R., S. Gualdi, S. Legutke, and V. Gayler, 2005: The Madden-Julian oscillation in ECHAM4 coupled and uncoupled general circulation models. Climate Dyn., 25, 117–140.

    Article  Google Scholar 

  • Tian, B. J., D. E. Waliser, and E. J. Fetzer, 2006: Modulation of the diurnal cycle of tropical deep convective clouds by the MJO. Geophys. Res. Lett., 33, L20704, doi:10.1029/2006GL027752.

    Article  Google Scholar 

  • Waliser, D. E., and Coauthors, 2009: MJO Simulation Diagnostics. J. Climate, 22, 3006–3030.

    Article  Google Scholar 

  • Wang, C., R. H. Weisberg, and H. Yang, 1999: Effects of the Wind Speed-Evaporation-SST feedback on the El Nino-Southern Oscillation. J. Atmos. Sci., 56, 1391–1403.

    Article  Google Scholar 

  • Wang, W. Q., and M. E. Schlesinger, 1999: The dependence on convection parameterization of the tropical intraseasonal oscillation simulated by the UIUC 11-layer atmospheric GCM. J. Climate, 12, 1423–1457.

    Article  Google Scholar 

  • Weaver, S. J., W. Wang, M. Chen, and A. Kumar, 2011: Representation of MJO variability in the NCEP Climate Forecast System. J. Climate, 24, 4676–4694.

    Article  Google Scholar 

  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 1917–1932.

    Article  Google Scholar 

  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539–2558.

    Article  Google Scholar 

  • Zhang, C., M. Dong, S. Gualdi, H. H. Hendon, E. D. Maloney, A. Marshall, K. R. Sperber, and W. Q. Wang, 2006: Simulations of the Madden-Julian oscillation in four pairs of coupled and uncoupled global models. Climate Dyn., 27, 573–592.

    Article  Google Scholar 

  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian climate centre general circulation model. Atmos.-Ocean, 33, 407–446.

    Article  Google Scholar 

  • _____, and M. Mu, 2005: Simulation of the Madden-Julian oscillation in the NCAR CCM3 using a revised Zhang-McFarlane convection parameterization scheme, J. Climate, 18, 4046–4064.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song-You Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ham, S., Hong, SY. Sensitivity of simulated intraseasonal oscillation to four convective parameterization schemes in a coupled climate model. Asia-Pacific J Atmos Sci 49, 483–496 (2013). https://doi.org/10.1007/s13143-013-0043-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-013-0043-9

Key words

Navigation