Skip to main content
Log in

Limit formulae and jump relations of potential theory in Sobolev spaces

  • Original Paper
  • Published:
GEM - International Journal on Geomathematics Aims and scope Submit manuscript

Abstract

In this article we combine the modern theory of Sobolev spaces with the classical theory of limit formulae and jump relations of potential theory. Also other authors proved the convergence in Lebesgue spaces on ∂Σ for integrable functions, see for example Fichera (Ann Math Pura ed Appl Serie IV, Tomo 27, 1948) or Freeden and Kersten (The geodetic boundary value problem using the known surface of the Earth. Veröffentlichung des Geodätischen Instituts der RWTH Aachen, 29, 1980). The achievement of this paper is the L 2(∂Σ) convergence for the weak derivatives of higher orders. Also the layer functions F are elements of Sobolev spaces and ∂Σ is a two dimensional suitable smooth submanifold in \({\mathbb{R}^3}\), called regular C m,α-surface. We are considering the potential of the single layer, the potential of the double layer as well as their first order normal derivatives. Main tool is the convergence in C m(∂Σ) which is proved with help of some results taken from Günter (Die Potentialtheorie und ihre Anwendungen auf Grundaufgaben der mathematischen Physik. Teubner, Leipzig, 1957). Additionally, we need a result about the limit formulae in L 2(∂Σ), which can be found in Kersten (Result Math 3:17–24, 1980), and a reduction result which we took from Müller (Math Ann 123:235–262, 1951). Moreover we prove the convergence in the Hölder spaces C m,β(∂Σ). Finally, we give an application of the limit formulae and jump relations to Geomathematics. We generalize density results, see e.g. Freeden and Michel (Multiscale potential theory. Birkhäuser, Boston, 2004), from L 2(∂Σ) to H m,2(∂Σ). For it we prove the limit formula for U 1 in (H m,2(∂Σ))' also. The last section is dedicated to oblique limit formulae for the single layer potential as well as for its first order oblique derivative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  • Alt H.W.: Lineare Funktionalanalysis. Springer, New York (2002)

    MATH  Google Scholar 

  • Berezanskij Y.M.: Spectral Methods in Infinite-Dimensional Analysis, vol. 1. Kluwer Academic Publishers, Dordrecht (1995)

    MATH  Google Scholar 

  • Colton D., Kress R.: Integral Equations in Scattering Theory. Wiley, New York (1983)

    Google Scholar 

  • Dautray R., Lions L.: Mathematical Analysis and Numerical Methods for Science and Technology, vol. 2. Springer, New York (1988)

    Google Scholar 

  • Dobrowolski M.: Angewandte Funktionalanalysis. Springer, New York (2006)

    MATH  Google Scholar 

  • Fichera, G.: Teoremi di completezza sulla frontiera di un domino per taluni systema di funzioni. Ann. Math. Pura ed Appl., Serie IV, Tomo 27 (1948)

  • Freeden W.: On the approximation of external gravitational potential with closed systems of (trial) functions. Bull. Géod. 54, 1–20 (1980)

    Article  MathSciNet  Google Scholar 

  • Freeden, W., Kersten, H.: The Geodetic Boundary Value Problem Using The Known Surface of the Earth. Veröffentlichung des Geodätischen Instituts der RWTH Aachen, 29 (1980)

  • Freeden W., Mayer C.: Wavelets generated by layer potentials. Appl. Comput. Harmon. Anal. 14, 195–237 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Freeden W., Michel V.: Multiscale Potential Theory. Birkhäuser, Boston (2004)

    MATH  Google Scholar 

  • Gehm, H.W.: Über vollständige und abgeschlossene Funktionensysteme auf regulären Flächen mit Anwendungen auf die Randwertprobleme der Helmholtzschen Schwingungsgleichung. Dissertation, RTWH Aachen (1970)

  • Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order. Springer, New York (2001)

    MATH  Google Scholar 

  • Günter N.M.: Die Potentialtheorie und ihre Anwendungen auf Grundaufgaben der mathematischen Physik. Teubner, Leipzig (1957)

    Google Scholar 

  • Kellog O.D.: Foundations of Potential Theory. Springer, Berlin (1929)

    Google Scholar 

  • Kersten H.: Grenz- und Sprungrelationen für Potentiale mit quadratsummierbarer Flächenbelegung. Result. Math. 3, 17–24 (1980)

    MATH  MathSciNet  Google Scholar 

  • Miranda C.: Partial Differential Equations of Elliptic Type. Springer, New York (1970)

    MATH  Google Scholar 

  • Müller C.: Die Potentiale einfacher und mehrfacher Flächenbelegung. Math. Ann. 123, 235–262 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  • Reed M., Simon B.: Methods of Modern Mathematical Physics 1: Functional Analysis. Academic Press, New York (1972)

    MATH  Google Scholar 

  • Schmidt E.: Bemerkungen zur Potentialtheorie. Math. Ann. 68, 107–118 (1914)

    Article  Google Scholar 

  • Schauder J.: Potentialtheoretische Untersuchungen. Math. Z. 33, 602–640 (1931)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Raskop.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grothaus, M., Raskop, T. Limit formulae and jump relations of potential theory in Sobolev spaces. Int J Geomath 1, 51–100 (2010). https://doi.org/10.1007/s13137-010-0003-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13137-010-0003-9

Keywords

Mathematics Subject Classification (2000)

Navigation