Skip to main content
Log in

Validation of significant wave height retrieval from co-polarization Chinese Gaofen-3 SAR imagery using an improved algorithm

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

Chinese Gaofen-3 (GF-3) is the first civilian satellite to carry C-band (5.3 GHz) synthetic aperture radar (SAR). During the period of August 2016 to December 2017, 1 523 GF-3 SAR images acquired in quad-polarization (vertical-vertical (VV), horizontal-horizontal (HH), vertical-horizontal (VH), and horizontal-vertical (HV)) mode were recorded, mostly around China’s seas. In our previous study, the root mean square error (RMSE) of significant wave height (SWH) was found to be around 0.58 m when compared with retrieval results from a few GF-3 SAR images in co-polarization (VV and HH) with moored measurements by using an empirical algorithm CSAR_WAVE. We collected a number of sub-scenes from these 1 523 images in the co-polarization channel, which were collocated with wind and SWH data from the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis field at a 0.125° grid. Through the collected dataset, an improved empirical wave retrieval algorithm for GF-3 SAR in co-polarization was tuned, herein denoted as CSAR_WAVE2. An additional 92 GF-3 SAR images were implemented in order to validate CSAR_WAVE2 against SWH from altimeter Jason-2, showing an about 0.52 m RMSE of SWH for co-polarization GF-3 SAR. Therefore, we conclude that the proposed empirical algorithm has a good performance for wave retrieval from GF-3 SAR images in co-polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdalla S, Janssen P A E M, Bidlot J R. 2010. Jason-2 OGDR wind and wave products: monitoring, validation and assimilation. Marine Geodesy, 33(S1): 239–255

    Article  Google Scholar 

  • Alpers W, Brümmer B. 1994. Atmospheric boundary layer rolls observed by the synthetic aperture radar aboard the ERS-1 satellite. Journal of Geophysical Research, 99(C6): 12613–12621

    Article  Google Scholar 

  • Alpers W R, Ross D B, Rufenach C L. 1981. On the detectability of ocean surface waves by real and synthetic aperture radar. Journal of Geophysical Research: Oceans, 86(C7): 6481–6498

    Article  Google Scholar 

  • Alpers W R, Bruening C. 1986. On the relative importance of motionrelated contributions to the Sar imaging mechanism of ocean surface waves. IEEE Transactions on Geoscience and Remote Sensing, GE-24(6): 873–885

    Article  Google Scholar 

  • Bruck M, Lehner S. 2015. TerraSAR-X/TanDEM-X sea state measurements using the XWAVE algorithm. International Journal of Remote Sensing, 36(15): 3890–3912

    Article  Google Scholar 

  • Chapron B, Johnsen H, Garello R. 2001. Wave and wind retrieval from SAR images of the ocean. Annales Des Télécommunications, 56(11–12): 682–699

    Google Scholar 

  • Feindt F, Schröter J, Alpers W. 1986. Measurement of the ocean waveradar modulation transfer function at 35 GHz from a sea-based platform in the North Sea. Journal of Geophysical Research: Oceans, 91(C8): 9701–9708

    Article  Google Scholar 

  • Grieco G, Lin W, Migliaccio M, et al. 2016. Dependency of the sentinel1 azimuth wavelength Cut-off on significant wave height and wind speed. International Journal of Remote Sensing, 37(21): 5086–5104

    Article  Google Scholar 

  • Hasselmann K, Hasselmann S. 1991. On the nonlinear mapping of an ocean wave spectrum into a synthetic aperture radar image spectrum and its inversion. Journal of Geophysical Research: Oceans, 96(C6): 10713–10729

    Article  Google Scholar 

  • Hasselmann S, Hasselmann K. 1985. Computations and parametrizations of the nonlinear energy transfer in a gravity wave spectrum: Part I. a new method for efficient computations of the exact nonlinear transfer integral. Journal of Physical Oceanography, 15: 1369–1377

    Google Scholar 

  • Hasselmann S, Bruning C, Hasselmann K. 1996. An improved algorithm for the retrieval of ocean wave spectra from synthetic aperture radar image spectra. Journal of Geophysical Research: Oceans, 101(C7): 16615–16629

    Article  Google Scholar 

  • Hersbach H, Stoffelen A, De Haan S. 2007. An improved C-band scatterometer ocean geophysical model function: CMOD5. Journal of Geophysical Research: Oceans, 112(C3): C03006

    Article  Google Scholar 

  • Hwang P A, Fois F. 2015. Surface roughness and breaking wave properties retrieved from polarimetric microwave radar backscattering. Journal of Geophysical Research: Oceans, 120(5): 3640–3657

    Google Scholar 

  • Li Xiaofeng, Pichel W, He Mingxia, et al. 2002. Observation of hurricane-generated ocean swell refraction at the gulf stream north wall with the RADARSAT-1 synthetic aperture radar. IEEE Transactions on Geoscience and Remote Sensing, 40(10): 2131–2142

    Article  Google Scholar 

  • Li Xiaoming, Koenig T, Schulz-Stellenfleth J, et al. 2010. Validation and intercomparison of ocean wave spectra inversion schemes using ASAR wave mode data. International Journal of Remote Sensing, 31(17): 4969–4993

    Article  Google Scholar 

  • Li Xiaoming, Lehner S, Bruns T. 2011. Ocean wave integral parameter measurements using envisat ASAR wave mode data. IEEE Transactions on Geoscience and Remote Sensing, 49(1): 155–174

    Article  Google Scholar 

  • Li Xiaofeng. 2015. The first sentinel-1 SAR image of a typhoon. Acta Oceanologica Sinica, 34(1): 1–2

    Article  Google Scholar 

  • Lin Bo, Shao Weizeng, Li Xiaofeng, et al. 2017. Development and validation of an ocean wave retrieval algorithm for VV-polarization sentinel-1 SAR Data. Acta Oceanologica Sinica, 36(7): 95–101

    Article  Google Scholar 

  • Lyzenga D R. 1986. Numerical simulation of synthetic aperture radar image spectra for ocean waves. IEEE Transactions on Geoscience and Remote Sensing, GE-24(6): 863–872

    Article  Google Scholar 

  • Marghany M, Ibrahim Z, Van Genderen J. 2002. Azimuth cut-off model for significant wave height investigation along coastal water of Kuala Terengganu, Malaysia. International Journal of Applied Earth Observation and Geoinformation, 4(2): 147–160

    Article  Google Scholar 

  • Mastenbroek C, De Valk C F. 2000. A semiparametric algorithm to retrieve ocean wave spectra from synthetic aperture radar. Journal of Geophysical Research: Oceans, 105(C2): 3497–3516

    Article  Google Scholar 

  • Pleskachevsky A L, Rosenthal W, Lehner S. 2016. Meteo-marine parameters for highly variable environment in coastal regions from satellite radar images. ISPRS Journal of Photogrammetry and Remote Sensing, 119(2): 464–484

    Article  Google Scholar 

  • Ren Lin, Yang Jingsong, Zheng Gang, et al. 2015. Significant wave height estimation using azimuth Cutoff of C-band RADARSAT-2 single-polarization SAR images. Acta Oceanologica Sinica, 34(12): 93–101

    Article  Google Scholar 

  • Ren Lin, Yang Jingsong, Mouche A, et al. 2017. Preliminary analysis of Chinese GF-3 SAR Quad-polarization measurements to extract winds in each polarization. Remote Sensing, 9(12): 1215

    Article  Google Scholar 

  • Romeiser R, Graber H C, Caruso M J, et al. 2015. A new approach to ocean wave parameter estimates from C-band ScanSAR images. IEEE Transactions on Geoscience and Remote Sensing, 53(3): 1320–1345

    Article  Google Scholar 

  • Schulz-Stellenfleth J, Lehner S, Hoja D. 2005. A parametric scheme for the retrieval of two-dimensional ocean wave spectra from synthetic aperture radar look cross spectra. Journal of Geophysical Research: Oceans, 101(C5): C05004

    Google Scholar 

  • Schulz-Stellenfleth J, König T, Lehner S. 2007. An empirical approach for the retrieval of integral ocean wave parameters from synthetic aperture radar data. Journal of Geophysical Research: Oceans, 112(C3): C03019

    Article  Google Scholar 

  • Shao Weizeng, Li Xiaofeng, Hwang P, et al. 2017a. Bridging the gap between cyclone wind and wave by C-band SAR measurements. Journal of Geophysical Research: Oceans, 122(8): 6714–6724

    Google Scholar 

  • Shao Weizeng, Li Xiaofeng, Sun Jian. 2015. Ocean wave parameters retrieval from TerraSAR-X images validated against buoy measurements and model results. Remote Sensing, 7 (10): 12815–12828

    Article  Google Scholar 

  • Shao Weizeng, Sheng Yexin, Sun Jian. 2017b. Preliminary assessment of wind and wave retrieval from Chinese Gaofen-3 SAR imagery. Sensors, 17(8): 1705

    Article  Google Scholar 

  • Shao Weizeng, Sun Jian, Guan Changlong, et al. 2014. A method for sea surface wind field retrieval from SAR image mode data. Journal of Ocean University of China, 13(2): 198–204

    Article  Google Scholar 

  • Shao Weizeng, Wang Jing, Li Xiaofeng, et al. 2017c. An empirical algorithm for wave retrieval from Co-polarization X-Band SAR imagery. Remote Sensing, 9(7): 711

    Article  Google Scholar 

  • Shao Weizeng, Yuan Xinzhe, Sheng Yexin, et al. 2018. Development of wind speed retrieval from cross-polarization Chinese Gaofen-3 synthetic aperture radar in typhoons. Sensors, 18(2): 412

    Article  Google Scholar 

  • Shao Weizeng, Zhang Zheng, Li Xiaofeng, et al. 2016. Ocean wave parameters retrieval from sentinel-1 SAR imagery. Remote Sensing, 8(9): 707

    Article  Google Scholar 

  • Stoffelen A, Anderson D. 1997. Scatterometer data interpretation: estimation and validation of the transfer function CMOD4. Journal of Geophysical Research: Oceans, 102(C3): 5767–5780

    Article  Google Scholar 

  • Stopa J E, Ardhuin F, Chapron B, et al. 2016. Estimating wave orbital velocity through the azimuth cutoff from space-borne satellites. Journal of Geophysical Research: Oceans, 120(11): 7616–7634

    Google Scholar 

  • Stopa J E, Mouche A. 2017. Significant wave heights from sentinel-1 SAR: validation and applications. Journal of Geophysical Research: Oceans, 122(3): 1827–1848

    Google Scholar 

  • Sun Jian, Guan Changlong. 2006. Parameterized first-guess spectrum method for retrieving directional spectrum of swell-dominated waves and huge waves from SAR images. Chinese Journal of Oceanology and Limnology, 24(1): 12–20

    Article  Google Scholar 

  • Sun Jian, Kawamura H. 2009. Retrieval of surface wave parameters from SAR images and their validation in the coastal seas around Japan. Journal of Oceanography, 65(4): 567

    Article  Google Scholar 

  • Wang He, Yang Jingsong, Mouche A, et al. 2017. GF-3 SAR ocean wind retrieval: the first view and preliminary assessment. Remote Sensing, 9(7): 694

    Article  Google Scholar 

  • Wang He, Zhu Jianhua, Yang Jingsong, et al. 2012. A semiempirical algorithm for SAR wave height retrieval and its validation using envisat ASAR wave mode data. Acta Oceanologica Sinica, 31(3): 59–66

    Article  Google Scholar 

  • Yang Jingsong, Wang Juan, Ren Lin. 2017. The first quantitative remote sensing of ocean internal waves by Chinese GF-3 SAR satellite. Acta Oceanologica Sinica, 36(1): 118

    Article  Google Scholar 

  • Zhang Biao, Perrie W, He Yijun. 2011. Wind speed retrieval from RADARSAT-2 quad-polarization images using a new polarization ratio model. Journal of Geophysical Research: Oceans, 116(C8): C08008

    Article  Google Scholar 

Download references

Acknowledgements

Gaofen-3 synthetic aperture radar (SAR) images are collected through an authorized account issued by the National Ocean Satellite Application Center (NSOAS) under the contract of Specific Project of Chinese High Resolution Earth Observation System (No. 41-Y20A14-9001-15/16) via http://dds.nsoas.org.cn. The authers greatly appreciate the European Centre for Medium-Range Weather Forecasts (ECMWF) for providing reanalysis wind and wave data at a 0.125 grid, which were openly downloaded via http://www.ecmwf.int. Operational Geophysical Data Record (OGDR) wave data from Jason-2 mission were accessed via https://data.nodc.noaa.gov. The authers thank Cui Limin (NSOAS) and Li Huan (National Marine Data and Information Service) for the helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weizeng Shao.

Additional information

Foundation item: The National Key Research and Development Program of China under contract Nos 2016YFC1401905 and 2017YFA0604901; the National Natural Science Foundation of China under contract Nos 41776183, 41676014, 41606024 and 41506033; the National Social Science Foundation of China under contract No. 15ZDB170.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, Y., Shao, W., Zhu, S. et al. Validation of significant wave height retrieval from co-polarization Chinese Gaofen-3 SAR imagery using an improved algorithm. Acta Oceanol. Sin. 37, 1–10 (2018). https://doi.org/10.1007/s13131-018-1217-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-018-1217-1

Key words

Navigation