Skip to main content
Log in

Turbulent mixing above the Atlantic Water around the Chukchi Borderland in 2014

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

This study presents an analysis of the CTD data and the turbulent microstructure data collected in 2014, the turbulent mixing environment above the Atlantic Water (AW) around the Chukchi Borderland region is studied. Surface wind becomes more efficient in driving the upper ocean movement along with the rapid decline of sea ice, thus results in a more restless interior of the Arctic Ocean. The turbulent dissipation rate is in the range of 4.60×10–10–3.31×10–9 W/kg with a mean value of 1.33×10–9 W/kg, while the diapycnal diffusivity is in the range of 1.45×10–6–1.46×10–5 m2/s with a mean value of 4.84×10–6 m2/s in 200–300 m (above the AW). After investigating on the traditional factors (i.e., wind, topography and tides) that may contribute to the turbulent dissipation rate, the results show that the tidal kinetic energy plays a dominating role in the vertical mixing above the AW. Besides, the swing of the Beaufort Gyre (BG) has an impact on the vertical shear of the geostrophic current and may contribute to the regional difference of turbulent mixing. The parameterized method for the double-diffusive convection flux above the AW is validated by the direct turbulent microstructure results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Carmack E C, Macdonald R W, Perkin R G, et al. 1995. Evidence for warming of Atlantic water in the southern Canadian Basin of the Arctic Ocean: results from the Larsen-93 expedition. Geophys Res Lett, 22(9): 1061–1064

    Article  Google Scholar 

  • D’Asaro E A, Morison J H. 1992. Internal waves and mixing in the Arctic Ocean. Deep-Sea Res: A, 39: S459–S484

    Article  Google Scholar 

  • Dee D P, Uppala S M, Simmons A J, et al. 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart J Roy Meteor Soc, 137(656): 553–597, doi: 10.1002/qj.828

    Article  Google Scholar 

  • Dosser H V, Rainville L, Toole J M. 2014. Near-inertial internal wave field in the Canada Basin from ice-tethered profilers. J Phys Oceanogr, 44(2): 413–426, doi: 10.1175/JPO-D-13-0117.1

    Article  Google Scholar 

  • Dosser H V, Rainville L. 2016. Dynamics of the changing near-inertial internal wave field in the Arctic Ocean. J Phys Oceanogr, 46(2): 395–415

    Article  Google Scholar 

  • Egbert G D, Erofeeva S Y. 2002. Efficient inverse modeling of barotropic ocean tides. J Atmos Oceanic Technol, 19(2): 183–204

    Article  Google Scholar 

  • Fer I. 2009. Weak vertical diffusion allows maintenance of cold halocline in the central Arctic. Atmos Oceanic Sci Lett, 2(3): 148–152

    Article  Google Scholar 

  • Ghaemsaidi S J, Dosser H V, Rainville L, et al. 2016. The impact of multiple layering on internal wave transmission. J Fluid Mech, 789: 617–629

    Article  Google Scholar 

  • Guthrie J D, Morison J H, Fer I. 2013. Revisiting internal waves and mixing in the Arctic Ocean. J Geophys Res, 118(8): 3966–3977

    Article  Google Scholar 

  • Ivey G N, Winters K B, Koseff J R. 2008. Density stratification, turbulence, but how much mixing?. Annu Rev Fluid Mech, 40(1): 169–184

    Article  Google Scholar 

  • Kaneko H, Yasuda I, Komatsu K, et al. 2012. Observations of the structure of turbulent mixing across the Kuroshio. Geophys Res Lett, 39(15): L15602, doi: 10.1029/2012GL052419

    Article  Google Scholar 

  • Kelley D. 1984. Effective diffusivities within oceanic thermohaline staircases. J Geophys Res, 89(C6): 10484–10488, doi: 10.1029/JC089iC06p10484

    Article  Google Scholar 

  • Kelley D E. 1990. Fluxes through diffusive staircases: a new formulation. J Geophys Res, 95(C3): 3365–3371

    Article  Google Scholar 

  • Kikuchi T, Inoue J, Morison J H. 2005. Temperature difference across the Lomonosov Ridge: implications for the Atlantic Water circulation in the Arctic Ocean. Geophys Res Lett, 32(20): L20604, doi: 10.1029/2005GL023982

    Article  Google Scholar 

  • Lenn Y D, Wiles P J, Torres-Valdes S, et al. 2009. Vertical mixing at intermediate depths in the Arctic boundary current. Geophys Res Lett, 36(5): L05601, doi: 10.1029/2008GL036792

    Article  Google Scholar 

  • Lincoln B J, Rippeth T P, Lenn Y D, et al. 2016. Wind-driven mixing at intermediate depths in an ice-free Arctic Ocean. Geophys Res Lett, 43(18): 9749–9756, doi: 10.1002/2016GL070454

    Article  Google Scholar 

  • Martin T, Steele M, Zhang J L. 2014. Seasonality and long-term trend of Arctic Ocean surface stress in a model. J Geophys Res, 119(3): 1723–1738

    Article  Google Scholar 

  • McLaughlin F, Shimada K, Carmack E, et al. 2005. The hydrography of the southern Canada Basin, 2002. Polar Biol, 28(3): 182–189, doi: 10.1007/s00300-004-0701-6

    Article  Google Scholar 

  • McLaughlin F A, Carmack E C, Williams W J, et al. 2009. Joint effects of boundary currents and thermohaline intrusions on the warming of Atlantic water in the Canada Basin, 1993-2007. J Geophys Res, 114(C1): C00A12, doi: 10.1029/2008JC005001

    Google Scholar 

  • Osborn T. R 1980. Estimates of the local rate of vertical diffusion from dissipation measurements. J Phys Oceanogr, 10: 83–89

    Article  Google Scholar 

  • Padman L, Dillon T M. 1987. Vertical heat fluxes through the Beaufort Sea the rmohalines tair case. J Geophys Res, 92 (C10): 10799–10806

    Article  Google Scholar 

  • Padman L, Dillon T M. 1991. Turbulent mixing near the Yermak Plateau during the Coordinated Eastern Arctic Experiment. J Geophys Res, 96(C3): 4769–4782

    Article  Google Scholar 

  • Padman L, Erofeeva S. 2004. A barotropic inverse tidal model for the Arctic Ocean. Geophys Res Lett, 31 (2): L02303, doi: 10.1029/2003GL019003

    Article  Google Scholar 

  • Polyakov I V, Alekseev G V, Timokhov L A, et al. 2004. Variability of the intermediate Atlantic water of the Arctic Ocean over the last 100 years. J Climate, 17(23): 4485–4497

    Article  Google Scholar 

  • Polyakov I V, Alexeev V A, Ashik I M, et al. 2011. Fate of early 2000s arctic warm water pulse. Bull Amer Meteor Soc, 92(5): 561–566, doi: 10.1175/2010BAMS2921.1

    Article  Google Scholar 

  • Polyakov I V, Timokhov L A, Alexeev V A, et al. 2010. Arctic Ocean warming contributes to reduced polar ice cap. J Phys Oceanogr, 40(12): 2743–2756, doi: 10.1175/2010JPO4339.1

    Article  Google Scholar 

  • Polyakov I V, Pnyushkov A V, Timokhov L A. 2012. Warming of the intermediate Atlantic water of the Arctic Ocean in the 2000s. J Climate, 25(23): 8362–8370

    Article  Google Scholar 

  • Proshutinsky A, Krishfield R, Timmermans M L, et al. 2009. Beaufort Gyre freshwater reservoir: state and variability from observat ions. J Geophys Res, 114 (C1): C00A10, doi: 10.1029/2008JC005104

    Google Scholar 

  • Rainville L, Lee C M, Woodgate R A. 2011. Impact of wind-driven mixing in the Arctic Ocean. Oceanography, 24(3): 136–145, doi: 10.5670/oceanog.2011.65

    Article  Google Scholar 

  • Rainville L, Winsor P. 2008. Mixing across the Arctic Ocean: microstructure observations during the Beringia 2005 Expedition. Geophys Res Lett, 35(8): L08606, doi: 10.1029/2008GL033532

    Article  Google Scholar 

  • Rainville L, Woodgate R A. 2009. Observations of internal wave generation in the seasonally ice-free Arctic. Geophys Res Lett, 36(23): L23604, doi: 10.1029/2009GL041291

    Article  Google Scholar 

  • Rippeth T P, Lincoln B J, Lenn Y D, et al. 2015. Tide-mediated warming of Arctic halocline by Atlantic heat fluxes over rough topography. Nat Geosci, 8(3): 191–194

    Article  Google Scholar 

  • Robertson R. 1999. Mixing and heat transport mechanisms in the upper ocean in the Weddell Sea [dissertation]. Corvallis: Oregon State University

    Google Scholar 

  • Shimada K, Kamoshida T, Itoh M, et al. 2006. Pacific Ocean inflow: influence on catastrophic reduction of sea ice cover in the Arctic Ocean. Geophys Res Lett, 33(8): L08605, doi: 10.1029/ 2005GL025624

    Article  Google Scholar 

  • Shimada K, McLaughlin F, Carmack E, et al. 2004. Penetration of the 1990s warm temperature anomaly of Atlantic Water in the Canada Basin. Geophys Res Lett, 31(20): L20301, doi: 10.1029/2004GL020860

    Article  Google Scholar 

  • Spreen G, Kaleschke L, Heygster G. 2008. Sea ice remote sensing using AMSR-E 89-GHz channels. J Geophys Res, 113(C2): C02S03, doi: 10.1029/2005JC003384

    Article  Google Scholar 

  • Thorpe S A. 2005. The Turbulent Ocean. Cambridge, UK: Cambridge University Press

    Book  Google Scholar 

  • Timmermans M L, Toole J, Krishfield R, et al. 2008. Ice-Tethered Profiler observations of the double-diffusive staircase in the Canada Basin thermocline. J Geophys Res, 113(C1): C00A02, doi: 10.1029/2008JC004829

    Google Scholar 

  • Tsamados M, Feltham D L, Schroeder D, et al. 2014. Impact of variable atmospheric and oceanic form drag on simulations of Arctic sea ice. J Phys Oceanogr, 44(5): 1329–1353

    Article  Google Scholar 

  • Tschudi M C, Fowler J, Maslanik, et al. 2016. Polar Pathfinder Daily 25 km EASE-Grid Sea Ice Motion Vectors, Version 3. Boulder, Colo: National Snow and Ice Data Center

    Google Scholar 

  • Turner J S. 2010. The melting of ice in the Arctic Ocean: the influence of double-diffusive transport of heat from below. J Phys Oceanogr, 40(1): 249–256, doi: 10.1175/2009JPO4279.1

    Article  Google Scholar 

  • Woodgate R A, Aagaard K, Swift J H, et al. 2005. Pacific ventilation of the Arctic Ocean’s lower halocline by upwelling and diapycnal mixing over the continental margin. Geophys Res Lett, 32(18): L18609, doi: 10.1029/2005GL023999

    Article  Google Scholar 

  • Woodgate R A, Aagaard K, Swift J H, et al. 2007. Atlantic water circulation over the Mendeleev Ridge and Chukchi Borderland from thermohaline intrusions and water mass properties. J Geophys Res, 112(C2): C02005, doi: 10.1029/2005JC003416

    Article  Google Scholar 

  • Yamazaki H. 1990. Stratified turbulence near a critical dissipation rate. J Phys Oceanogr, 20(10): 1583–1598

    Article  Google Scholar 

  • Yang Jiayan. 2009. Seasonal and interannual variability of downwelling in the Beaufort Sea. J Geophys Res, 114(C1): C00A14, doi: 10.1029/2008JC005084

    Google Scholar 

  • Zhao Jinping, Gao Guoping, Jiao Yutian. 2005. Warming in Arctic intermediate and deep waters around Chukchi Plateau and its adjacent regions in 1999. Sci China: Ser D. Earth Sci, 48(8): 1312–1320

    Article  Google Scholar 

  • Zhong Wenli, Zhao Jinping. 2014. Deepening of the Atlantic Water core in the Canada Basin in 2003-11. J Phys Oceanogr, 44(9): 2353–2369, doi: 10.1175/JPO-D-13-084.1

    Article  Google Scholar 

  • Zhong Wenli, Zhao Jinping, Shi Jiuxin, et al. 2015. The Beaufort Gyre variation and its impacts on the Canada Basin in 2003-2012. Acta Oceanol Sin, 34(7): 19–31, doi: 10.1007/s13131-015-0657-0

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the research groups of the 6th Chinese Arctic research expedition for assistant of collecting the CTD and turbulent microstructure data. Parts of the hydrographic data are from the Beaufort Gyre Exploration Project (BGEP) at http://www.whoi.edu/beaufortgyre/. The ECMWF surface wind data are available at https://www.ecmwf.int/en/forecasts/datasets. The sea ice velocity is distributed by NSIDC (https://nsidc. org/data/nsidc-0116). The sea ice concentration data is downloaded from https://seaice.uni-bremen.de/sea-ice-concentration/# Data_Archive. The data of the Arctic Ocean Dynamicsbased Tide Model is from http://polaris.esr.org/ptm_index.html.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenli Zhong.

Additional information

Foundation item: The Key Project of Chinese Natural Science Foundation under contract No. 41330960; the National Basic Research Program (973 Program) of China under contract No. 2015CB953902; the Ph D Programs Foundation of Ministry of Education of China under contract No. 20130132110021; the National Natural Science Foundation of China under contract No. 41706211.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, W., Guo, G., Zhao, J. et al. Turbulent mixing above the Atlantic Water around the Chukchi Borderland in 2014. Acta Oceanol. Sin. 37, 31–41 (2018). https://doi.org/10.1007/s13131-018-1198-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-018-1198-0

Keywords

Navigation