Skip to main content
Log in

Eddy properties in the Pacific sector of the Southern Ocean from satellite altimetry data

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

Mesoscale eddies play a key role in the ocean dynamics of the Southern Ocean, and eddy response to the climate changes has also been widely noted. Both eddy kinetic energy (EKE) and eddy detection algorithm are used to study the eddy properties in the Pacific sector of the Southern Ocean. Consistent with previous works, the maps of the EKE illustrate that higher energy confines to the Antarctic Polar Frontal Zone (APFZ) and decreases progressively from west to east. It also shows that the most significant increase in the EKE occurs in the western and central parts of the Pacific sector, where the baroclinicity of the Antarctic Circumpolar Current (ACC) is much stronger. Statistical eddy properties reveal that both of the spatial pattern and interannual variation of the EKE are primarily due to the eddy amplitude and the eddy rotational speed, rather than the eddy number or the eddy radius. In general, these results furtherly confirm that anomalous westerly wind forcing associated with the positive Southern Annular Mode (SAM) index enhances the Southern Ocean eddy activity by strengthening the eddy properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Böning C W, Dispert A, Visbeck M, et al. 2008. The response of the Antarctic Circumpolar Current to recent climate change. Nature Geoscience, 1(12): 864–869

    Article  Google Scholar 

  • Cai W, Shi G, Cowan T, et al. 2005. The response of the Southern Annular Mode, the East Australian Current, and the southern midlatitude ocean circulation to global warming. Geophysical Research Letters, 32: L23706

    Article  Google Scholar 

  • Chelton D B, Schlax M G, Samelson R M. 2011. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2): 167–216

    Article  Google Scholar 

  • Cunningham S A, Alderson S G, King B A, et al. 2003. Transport and variability of the Antarctic Circumpolar Current in Drake Passage. Journal of Geophysical Research, 108(C5): 8084

    Article  Google Scholar 

  • Duan Yongliang, Hou Yijun, Liu Hongwei, et al. 2012. Fronts, baroclinic transport, and mesoscale variability of the Antarctic Circumpolar Current in the southeast Indian Ocean. Acta Oceanologica Sinica, 31(6): 1–11

    Article  Google Scholar 

  • Duan Yongliang, Hou Youjun, Liu Hongwei, et al. 2013. The water mass variability and southward shift of the Southern Hemisphere mid-depth supergyre. Acta Oceanologica Sinica, 32(11): 74–81

    Article  Google Scholar 

  • Ducet N, Le Traon P Y, Reverdin G. 2000. Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. Journal of Geophysical Research, 105(C8): 19477–19498

    Article  Google Scholar 

  • Farneti R, Delworth T L. 2010. The role of mesoscale eddies in the remote oceanic response to altered Southern Hemisphere winds. Journal of Physical Oceanography, 40(10): 2348–2354

    Article  Google Scholar 

  • Farneti R, Delworth T L, Rosati A J, et al. 2010. The role of mesoscale eddies in the rectification of the Southern Ocean response to climate change. Journal of Physical Oceanography, 40(7): 1539–1557

    Article  Google Scholar 

  • Fyfe J C, Saenko O A, Zickfeld K, et al. 2007. The role of poleward-intensifying winds on Southern Ocean warming. Journal of Climate, 20(21): 5391–5400

    Article  Google Scholar 

  • Gille S T. 1999. Mass, heat, and salt transport in the southeastern Pacific: A Circumpolar Current inverse model. Journal of Geophysical Research, 104(C3): 5191–5209

    Article  Google Scholar 

  • Gladyshev S, Arhan M, Sokov A, et al. 2008. A hydrographic section from South Africa to the southern limit of the Antarctic Circumpolar Current at the Greenwich meridian. Deep-Sea Research: Part I. Oceanographic Research Papers, 55(10): 1284–1303

    Article  Google Scholar 

  • Hall A, Visbeck M. 2002. Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. Journal of Climate, 15(21): 3043–3057

    Article  Google Scholar 

  • Hallberg R, Gnanadesikan A. 2001. An exploration of the role of transient eddies in determining the transport of a zonally reentrant current. Journal of Physical Oceanography, 31(11): 3312–3330

    Article  Google Scholar 

  • Hallberg R, Gnanadesikan A. 2006. The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning: results from the modeling eddies in the Southern Ocean (MESO) project. Journal of Physical Oceanography, 36(12): 2232–2252

    Article  Google Scholar 

  • Hogg A M C, Blundell J R. 2006. Interdecadal variability of the Southern Ocean. Journal of Physical Oceanography, 36(8): 1626–1644

    Article  Google Scholar 

  • Hogg A M C, Meredith M P, Blundell J R, et al. 2008. Eddy heat flux in the Southern Ocean: response to variable wind forcing. Journal of Climate, 21(4): 608–620

    Article  Google Scholar 

  • Hogg A M C, Meredith M P, Chambers D P, et al. 2015. Recent trends in the Southern Ocean eddy field. Journal of Geophysical Research, 120(1): 257–267

    Google Scholar 

  • Hughes C W. 1995. Rossby waves in the Southern Ocean: A comparison of Topex/Poseidon altimetry with model predictions. Journal of Geophysical Research, 100(C8): 15933–15950

    Article  Google Scholar 

  • Hutchinson D K, Hogg A M C, Blundell J R. 2010. Southern Ocean response to relative velocity wind stress forcing. Journal of Physical Oceanography, 40(2): 326–339

    Article  Google Scholar 

  • Kindson J W. 1986. Index cycles in the Southern Hemisphere during the global weather experiment. Monthly Weather Review, 114(9): 1654–1663

    Article  Google Scholar 

  • Marshall D. 1995. Topographic steering of the Antarctic Circumpolar Current. Journal of Physical Oceanography, 25(7): 1636–1650

    Article  Google Scholar 

  • Marshall G J. 2003. Trends in the Southern Annular Mode from observations and reanalyses. Journal of Climate, 16(24): 4134–4143

    Article  Google Scholar 

  • Meredith M P, Hogg A M. 2006. Circumpolar response of Southern Ocean eddy activity to a change in the Southern Annular Mode. Geophysical Research Letters, 33: L16608

    Article  Google Scholar 

  • Morrow R, Coleman R, Church J, et al. 1994. Surface eddy momentum flux and velocity variances in the Southern Ocean from GeoSat altimetry. Journal of Physical Oceanography, 24(10): 2050–2071

    Article  Google Scholar 

  • Morrow R, Ward M L, Hogg A M, et al. 2010. Eddy response to Southern Ocean climate modes. Journal of Geophysical Research: Oceans, 115(C10): C10030

    Article  Google Scholar 

  • Munday D R, Johnson H L, Marshall D P. 2013. Eddy saturation of equilibrated circumpolar currents. Journal of Physical Oceanography, 43(3): 507–532

    Article  Google Scholar 

  • Orsi A H, Whitworth T, Nowlin W D Jr. 1995. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Research: Part I. Oceanographic Research Papers, 42(5): 641–673

    Article  Google Scholar 

  • Qiu Bo, Chen Shuiming. 2004. Seasonal modulations in the eddy field of the South Pacific Ocean. Journal of Physical Oceanography, 34(7): 1515–1527

    Article  Google Scholar 

  • Rintoul S R, Sokolov S. 2001. Baroclinic transport variability of the Antarctic Circumpolar Current south of Australia (WOCE repeat section SR3). Journal of Geophysical Research, 106(C2): 2815–2832

    Article  Google Scholar 

  • Rintoul S R, England M H. 2002. Ekman transport dominates local air–sea fluxes in driving variability of Subantarctic Mode Water. Journal of Physical Oceanography, 32(5): 1308–1321

    Article  Google Scholar 

  • Sallée J B, Morrow R, Speer K. 2008. Eddy heat diffusion and Subantarctic Mode Water formation. Geophysical Research Letters, 35(5): L05607

    Article  Google Scholar 

  • Sallée J B, Rintoul S R. 2011. Parameterization of eddy-induced subduction in the Southern Ocean surface-layer. Ocean Modelling, 39(1–2): 146–153

    Article  Google Scholar 

  • Screen J A, Gillett N P, Stevens D P, et al. 2009. The role of eddies in the Southern Ocean temperature response to the Southern Annular Mode. Journal of Climate, 22(3): 806–818

    Article  Google Scholar 

  • Sen Gupta A, England M H. 2006. Coupled ocean–atmosphere–ice response to variations in the Southern Annular Mode. Journal of Climate, 19(18): 4457–4486

    Article  Google Scholar 

  • Sokolov S, Rintoul S R. 2009a. Circumpolar structure and distribution of the Antarctic Circumpolar Current fronts: 1. Mean circumpolar paths. Journal of Geophysical Research, 114: C11018

    Article  Google Scholar 

  • Sokolov S, Rintoul S R. 2009b. Circumpolar structure and distribution of the Antarctic Circumpolar Current fronts: 2. Variability and relationship to sea surface height. Journal of Geophysical Research, 114: C11019

    Article  Google Scholar 

  • Spence P, Fyfe J C, Montenegro A, et al. 2010. Southern Ocean response to strengthening winds in an eddy-permitting global climate model. Journal of Climate, 23(19): 5332–5343

    Article  Google Scholar 

  • Sprintall J. 2003. Seasonal to interannual upper-ocean variability in the Drake Passage. Journal of Marine Research, 61(1): 27–57

    Article  Google Scholar 

  • Thompson A F. 2008. The atmospheric ocean: eddies and jets in the Antarctic Circumpolar Current. Philosophical Transactions of the Royal Society A, 366(1885): 4529–4541

    Article  Google Scholar 

  • Turner J, Colwell S R, Marshall G J, et al. 2005. Antarctic climate change during the last 50 years. International Journal of Climatology, 25(3): 279–294

    Article  Google Scholar 

  • Wang Zhaomin, Kuhlbrodt T, Meredith M P. 2011. On the response of the Antarctic Circumpolar Current transport to climate change in coupled climate models. Journal of Geophysical Research, 116: C08011

    Google Scholar 

  • Wolff J O, Maier-Reimer E, Olbers D J. 1991. Wind-driven flow over topography in a zonal ß-plane channel: A quasi-geostrophic model of the Antarctic Circumpolar Current. Journal of Physical Oceanography, 21(2): 236–264

    Article  Google Scholar 

  • Yang Xiaoyi, Wang Dongxiao, Wang Jia, et al. 2007. Connection between the decadal variability in the Southern Ocean circulation and the Southern Annular Mode. Geophysical Research Letters, 34: L16604

    Google Scholar 

  • Yang Xiaoyi, Huang Ruixin, Wang Jia, et al. 2008. Delayed baroclinic response of the Antarctic Circumpolar Current to surface wind stress. Science in China Series D. Earth Sciences, 51(7): 1036–1043

    Article  Google Scholar 

  • Zhang Huaimin, Reynolds R W, Bates J G. 2006. Blended and gridded high resolution global sea surface wind speed and climatology from multiple satellites: 1987–present. 14th Conference on Satellite Meteorology and Oceanography, Atlanta, GA, American Meteorological Society, Paper 100004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Liu.

Additional information

Foundation item: The Chinese Polar Science Strategy Research Foundation under contract No. 20150305; the National Natural Science Foundation of China under contract No. 41406012; the Shandong Provincial Natural Science Foundation of China under contract No. ZR2014DP011; the Basic Scientific Research Fund for National Public Institutes of China under contract No. 2015G05; the Open Fund of the Key Laboratory of Ocean Circulation and Waves, Chinese Academy of Sciences under contract No. KLOCAW1405.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Y., Liu, H., Yu, W. et al. Eddy properties in the Pacific sector of the Southern Ocean from satellite altimetry data. Acta Oceanol. Sin. 35, 28–34 (2016). https://doi.org/10.1007/s13131-016-0946-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-016-0946-2

Key words

Navigation