Skip to main content

Advertisement

Log in

Reduced inorganic sulfur in the sediments of the Yellow Sea and East China Sea

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

Cold diffusion methods are used to separate and quantify the three reduced inorganic sulfur species into acid volatile sulfide (AVS), pyrite-S and element sulfur (ES) in the sediments of the Yellow and East China Seas. The results show that up to 25.02 μmol/g of AVS, 113.1 μmol/g of pyrite-S and 44.4 μmol/g of ES are observed in the sediments of the Yellow Sea and East China Sea. Pyrite-S is the predominant sulfide mineral in the sediments, while the concentration of AVS is quite low at most stations in the study area. The amounts and reactivity of organic matter are the primary limited factor for the sulfide formation, while an iron limitation and a sulfate limitation are not observed in the sediments of the Yellow Sea and East China Sea. The irregular profiles of the three reduced inorganic sulfur species also reflected the comprehensive influence of sediment composition and sedimentation rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barillé-Boyer A L, Barillé L, Massé H, et al. 2003. Correction for particulate organic matter as estimated by loss on ignition in estuarine ecosystems. Estuarine, Coastal and Shelf Science, 58: 147–153

    Article  Google Scholar 

  • Beardsley R, Limeburner R, Yu H, et al. 1985. Discharge of the Changjiang (Yangtze River) into the East China Sea. Continental Shelf Research, 4: 57–76

    Article  Google Scholar 

  • Berner R A. 1980. Early Diagenesis a Theoretical Approach. Chichester, West Sussex: Princeton University Press, 1–245

    Google Scholar 

  • Berner R A. 1982. Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance. American Journal of Science, 282: 451–473

    Article  Google Scholar 

  • Berner R A. 1984. Sediment pyrite formation: an update. Geochimica et Cosmochimica Acta, 48: 605–615

    Article  Google Scholar 

  • Burton E D, Phillips I R, Hawker D W. 2005. Reactive sulfide relationships with trace metal extractability in sediments from Southern Moreton Bay, Australia. Marine Pollution Bulletin, 50: 589–608

    Article  Google Scholar 

  • Burton E D, Richard T B, Sullivan L A. 2006. Element sulfur in drain sediments associated with acid sulfate soils. Applied Geochemistry, 21: 1240–1247

    Article  Google Scholar 

  • Burton E D, Sullivan L A, Bush R T, et al. 2008. A simple and inexpensive chromium reducible sulfur method for acid volatile sulfate soils. Applied Geochemistry, 23: 2759–2766

    Article  Google Scholar 

  • Cai Weijun, Sayles F L. 1996. Oxygen penetration depths and fluxes in marine sediments. Marine Chemistry, 52: 123–131

    Article  Google Scholar 

  • Canfield D E, Raiswell R. 1991. Pyrite formation and fossil preservation. In: Allison P A, Briggs D E, eds. Taphonomy: Releasing the Data Locked in the Fossil Record, Topics in Geobiology. New York: Plenum Press, 337–387

    Chapter  Google Scholar 

  • Canfield D E, Raiswell R, Bottrell S. 1992. The reactivity of sedimentary iron minerals toward sulfide. American Journal of Science, 292: 659–683

    Article  Google Scholar 

  • Canfield D E, Thamdrup B. 1996. Fate of elemental sulfur in an intertidal sediment. FEMS Microbiology Ecology, 19: 95–103

    Article  Google Scholar 

  • Chanton J P, Martens C S. 1987. Biogeochemical cycling in an organic-rich coastal marine basin: 7. Sulfur mass balance, oxygen uptake and sulfide retention. Geochimica et Cosmochimica Acta, 51: 1187–1199

    Article  Google Scholar 

  • Cui Maochang, Hu Dunxin, Mo Jun. 2004. Seasonality and causes of the Yellow Sea Warm Current. Chinese Journal of Oceanology and Limnology, 22(3): 265–270

    Article  Google Scholar 

  • Duan Weimin, Chen Lirong. 1993. The history of the pyrite formation in the process of early diagenesis in the Yellow Sea and East China Sea. Science in China: Series B (in Chinese), 23(5): 545–552

    Google Scholar 

  • Fu Mingzhu, Wang Zongling, Li Yan, et al. 2009. Phytoplankton biomass size structure and its regulation in the southern Yellow Sea (China): seasonal variability. Continental Shelf Research, 29: 2178–2194

    Article  Google Scholar 

  • Gagnon C, Mucci A, Pelletier É. 1995. Anamalous accumulations of acid volatile sulphides (AVS) in a coastal marine sediment, Saguenay Fjord, Canada. Geochimica et Cosmochimica Acta, 59(13): 2663–2675

    Article  Google Scholar 

  • George W L III. 2005. Acid volative sulfide-a comment. Marine Chemistry, 97: 198–205

    Article  Google Scholar 

  • Henneke E, Luther III G W, De Lange G J, et al. 1997. Sulphur speciation in anoxic hypersaline sediments from the Eastern Mediterranean Sea. Geochimica et Cosmochimica Acta, 61(2): 307–321

    Article  Google Scholar 

  • Holmkvist L, Jr. A K, Vogt C, et al. 2011. Sulfate reduction below the sulfate methane transition in Black Sea sediments. Deep Sea Research: I, 58: 493–504

    Article  Google Scholar 

  • Hsieh Y P, Chung S W, Tsau Y J, et al. 2002. Analysis of sulfides in the presence of ferric mineral by diffusion methods. Chemical Geology, 182: 195–201

    Article  Google Scholar 

  • Hsieh Y P, Yang C H. 1989. Diffusion methods for the determination of reduced inorganic sulfur species in sediments. Limnology and Oceanography, 34(6): 1126–1130

    Article  Google Scholar 

  • Hu Lei, Liu Sumei, Ren Jingling, et al. 2009. Study on distribution of acid volatile in sediments of coastal zone in East China Sea. Marine Environmental Science (in Chinese), 28(5): 482–486

    Google Scholar 

  • Hu Limin, Shi Xuefa, Guo Zhigang, et al. 2013. Sources, dispersal and preservation of sedimentary organic matter in the Yellow Sea: the importance of depositional hydrodynamic forcing. Marine Geology, 335: 52–63

    Article  Google Scholar 

  • Huang K M, Lin S. 1995. The carbon sulfide iron relationship and sulfate reduction rate in the East China Sea continental shelf sediments. Geochemical Journal, 29: 301–315

    Article  Google Scholar 

  • Jensen M M, Petersen J, Dalsgaard T, et al. 2009. Pathways, rates, and regulation of N2 production in the chemocline of an anoxic basin, Mariager Fjord, Denmark. Marine Chemistry, 113: 102–113

    Article  Google Scholar 

  • Jiang Zhihua, Ma Qimin, Wang Xiulin, et al. 2005. Study on the AVS in surface sediment in the north area of the Bohai Bay. Marine Environmental Science (in Chinese), 24(3): 6–8

    Google Scholar 

  • Jørgensen B B. 1982. Mineralization of organic matter in the sea bed the role of sulfate reduction. Nature, 296: 643–645

    Article  Google Scholar 

  • Jørgensen B B, Kasten S. 2006. Sulfur cycling and methane oxidation. Marine Geochemistry. Berlin: Springer-Verlag, 271–309

    Chapter  Google Scholar 

  • Jørgensen B B, Parkes R J. 2010. Role of sulfate reduction and methane production by organic carbon degradation in eutrophic fjord sediments (Limfjorden, Denmark). Limnology and Oceanography, 55(3): 1338–1352

    Article  Google Scholar 

  • King G M. 1985. Short-term endproduts of sulfate reduction in a salt marsh: formation of acid volatile sulfides, element sulfur, and pyrite. Geochimica et Cosmochimica Acta, 49: 1561–1566

    Article  Google Scholar 

  • Lallier-Vergèsa E, Bertranda P, Desprairiesb A. 1993. Organic matter composition and sulfate reduction intensity in Oman margin sediments. Marine Geology, 112(1-4): 57–69

    Article  Google Scholar 

  • Lange H J D, Griethuysen C V, Koelmans A A. 2008. Sampling method storage and pretreatment of sediment affect AVS concentrations with consequences for bio assay responses. Environmental Pollution, 151: 243–251

    Article  Google Scholar 

  • Li Jun, Hu Bangqi, Dou Yanguang, et al. 2012. Modern sedimentation rate, budget and supply of the muddy deposits in the East China Sea. Geological Review (in Chinese), 58(4): 745–756

    Google Scholar 

  • Lin S, Huang K M, Chen S K. 2000. Organic carbon deposition and its control on iron sulfide formation of the southern East China Sea continental shelf sediments. Continental Shelf Research, 20: 619–635

    Article  Google Scholar 

  • Lin S, Huang K M, Chen S K. 2002. Sulfate reduction and iron sulfide mineral formation in the southern East China Sea continental slope sediment. Deep-Sea Research: Part I, 49: 1837–1852

    Article  Google Scholar 

  • Middelburg J J. 1991. Organic carbon, sulphur, and iron in recent semi-euxinic sediments of KauBay, Indonesia. Geochimica et Cosmochimica Acta, 55: 815–828

    Article  Google Scholar 

  • Milliman J D, Meade R H. 1983. World-wide delivery of river sediment to the oceans. Journal of Geology, 91(1): 1–21

    Article  Google Scholar 

  • Morse J W. 1994. Interactions of trace metals with authigenic sulfide minerals: implications for their bioavailability. Marine Chemistry, 46: 1–6

    Article  Google Scholar 

  • Morse J W, Cornwell J C. 1987. Analysis and distribution of iron sulfide minerals in recent anoxic marine sediments. Marine Chemistry, 22: 55–69

    Article  Google Scholar 

  • Morse J W, Rickard D. 2004. Chemical dynamics of sedimentary acid volatile sulfide. Environmental Science and Technology, 38: 131A–136A

    Article  Google Scholar 

  • Mustafa Y, Konovalov S K, Moore T S, et al. 2010. Sulfur speciation in the upper Black Sea sediments. Chemical Geology, 269: 364–375

    Article  Google Scholar 

  • Nedwell D B, Abram J W. 1978. Bacterial sulphate reduction in relation to sulphur geochemistry in two contrasting areas of saltmarsh sediment. Estuarine and Coastal Marine Science, 6(4): 341–351

    Article  Google Scholar 

  • Panutrakul S, Monteny F, Baeyens W. 2001. Seasonal variations in sediment sulfur cycling in the Ballastplaat mudflat, Belgium. Estuaries, 24(2): 257–265

    Article  Google Scholar 

  • Pu Xiaoqiang, Li Fangcheng, Zhong Shaojun, et al. 2008. Acid volatile sulfides in sediments of South Yellow Sea. Bioinformatics and Biomedical Engineering, 2008. ICBBE 2008. The 2nd International Conference on. IEEE, 1058–1061.

    Google Scholar 

  • Pu Xiaoqiang, Zhong Shaojun, Liu Fei, et al. 2009. Geochemical characters of acid volatile sulfide and reactive metals in the estuary sediments in the Licun Estuary of the Jiaozhou Bay. Marine Science Bulletin (in Chinese), 28(3): 37–44

    Google Scholar 

  • Qin Yunshan, Zhao Yiyang, Chen Lirong, et al. 1989. Geology of the Yellow Sea. Beijing: China Ocean Press, 289

    Google Scholar 

  • Raiswell R, Canfield E. 1998. Source of iron for pyrite formation in marine sediments. American Journal of Science, 298: 219–245

    Article  Google Scholar 

  • Rickard D, Morse J W. 2005. Acid volatile sulfide (AVS). Marine Chemistry, 97: 141–197

    Article  Google Scholar 

  • Roden E E, Tuttle J H. 1993. Inorganic sulfur cycling in mid and lower Chesapeake Bay sediments. Marine Ecology Progress Series, 93: 101–118

    Article  Google Scholar 

  • Santisteban J I, Mediavilla R, López-Pamo E, et al. 2004. Loss on ignition: a qualitative or quantitative method for organic matter and carbonate mineral content in sediments? Joural of Paleolimnology, 32: 287–299

    Article  Google Scholar 

  • Thullner M, Andrew W D, Regnier P. 2009. Global-scale quantification of mineralization pathways in marine sediments: a reaction-transport modeling approach. Geochemistry Geophysics Geosystems, 10: 1–24

    Article  Google Scholar 

  • Wang Xuchen, Sun Mingyi, Li Anchun. 2008. Contrasting chemical and isotopic compositions of organic matter in Changjiang (Yangtze River) estuarine and East China Sea shelf sediments. Journal of Oceanography, 64: 311–321

    Article  Google Scholar 

  • Wei Zhongqing, Liu Congqiang, Liang Xiaobing, et al. 2005. Degradation of organic matter in the sediments of Hongfeng Reservoir. Chinese Science Bulletin, 50: 2377–2380

    Article  Google Scholar 

  • Westrich J T, Berner R A. 1984. The role of sedimentary organic matter in bacterial sulfate reduction: The G model tested. Limnology and Oceanography, 29(2): 236–249

    Article  Google Scholar 

  • Zhang Jing, Liu Sumei, Ren Jingling, et al. 2007. Nutrient gradients from the eutrophic Changjiang (Yangtze River) Estuary to the oligotrophic Kuroshio waters and re-evaluation of budgets for the East China Sea shelf. Progress in Oceanography, 74: 449–478

    Article  Google Scholar 

  • Zhang Xiangshang, Zhang Longjun. 2007. Acid volatile sulfide and simultaneously extracted metals in tidal flat sediments of Jiaozhou Bay, China. Journal of Ocean University of China, 6(2): 137–142

    Article  Google Scholar 

  • Zhu Maoxu, Hao Xiaochen, Shi Xiaoning, et al. 2012. Speciation and spatial distribution of solid-phase iron in surface sediments of the East China Sea continental shelf. Applied Geochemistry, 27: 892–905

    Article  Google Scholar 

  • Zhu Zhuoyi, Zhang Jing, Wu Ying, et al. 2011. Hypoxia off the Changjiang (Yangtze River) Estuary: oxygen depletion and organic matter decomposition. Marine Chemistry, 125: 108–116

    Article  Google Scholar 

  • Zimmerman A R, Canuel E A. 2000. A geochemical record of eutrophication and anoxia in Chesapeake Bay sediments: anthropogenic influence on organic matter composition. Marine Chemistry, 69: 117–137

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumei Liu.

Additional information

Foundation item: The National Basic Research Program (973 Program) of China under contract Nos 2010CB428901 and 2011CB409802; the National Natural Science Foundation of China under contract Nos 40925017 and 41221004.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, X., Liu, S. & Zhang, G. Reduced inorganic sulfur in the sediments of the Yellow Sea and East China Sea. Acta Oceanol. Sin. 33, 100–108 (2014). https://doi.org/10.1007/s13131-014-0499-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-014-0499-1

Key words

Navigation