Skip to main content
Log in

De novo sequencing and comparative analysis of three red algal species of Family Solieriaceae to discover putative genes associated with carrageenan biosysthesis

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

Betaphycus gelatinus, Kappaphycus alvarezii and Eucheuma denticulatum of Family Solieriaceae, Order Gigartinales, Class Rhodophyceae are three important carrageenan-producing red algal species, which produce different types of carrageenans, beta (β)-carrageenan, kappa (κ)-carrageenan and iota (ι)-carrageenan. So far the carrageenan biosynthesis pathway is not fully understood and few information is about the Solieriaceae genome and transcriptome sequence. Here, we performed the de novo transcriptome sequencing, assembly, functional annotation and comparative analysis of these three commercial-valuable species using an Illumina short-sequencing platform Hiseq 2000 and bioinformatic software. Furthermore, we compared the different expression of some unigenes involved in some pathways relevant to carrageenan biosynthesis. We finally found 861 different expressed KEGG orthologs which contained a glycolysis/gluconeogenesis pathway (21 orthologs), carbon fixation in photosynthetic organisms (16 orthologs), galactose metabolism (5 orthologs), and fructose and mannose metabolism (9 orthologs) which are parts of the carbohydrate metabolism. We also found 8 different expressed KEGG orthologs for sulfur metabolism which might be importantly related to biosynthesis of different types of carrageenans. The results presented in this study provided valuable resources for functional genomics annotation and investigation of mechanisms underlying the biosynthesis of carrageenan in Family Solieriaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul S F, Madden T L, Schaffer A A, et al. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 25(17): 389–402

    Article  Google Scholar 

  • Ashburner M, Ball C A, Blake J A, et al. 2000. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature Genetics, 25(1): 25–29

    Article  Google Scholar 

  • Barrero R A, Chapman B, Yang Y F, et al. 2011. De novo assembly of Euphorbia fischeriana root transcriptome identifies prostratin pathway related genes. BMC genomics, 12: 600

    Article  Google Scholar 

  • Berrier A, Ulbricht R, Bonn M, et al. 2010. Ultrafast active control of localized surface plasmon resonances in silicon bowtie antennas. Optics Express, 18(22): 23226–23235

    Article  Google Scholar 

  • Chiovitti A, Liao M L, Kraft G T, et al. 1995. Cell wall polysaccharides from Australian red algae of the family Solieriaceae (Gigartinales, Rhodophyta): Iota/kappa/beta-carrageenans from Melanema dumosum. Phycologia, 34(6): 522–527

    Article  Google Scholar 

  • Cock J M, Sterck L, Rouze P, et al. 2010. The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature, 465(7298): 617–621

    Article  Google Scholar 

  • Cole K M, Sheath R G. 1990. Biology of the Red Algae. Cambridge, UK: Cambridge University Press

    Google Scholar 

  • Doty M S. 1988. Prodromus ad systematica Eucheumatoideorum: a tribe of commercial seaweeds related to Eucheuma (Solieriaceae, Gigartinales). In: Abbott I A, ed. Taxonomy of Economic Seaweeds, v II. La Jolla, CA: California Sea Grant Program, University of California, 159–207

    Google Scholar 

  • Garg R, Patel R K, Tyagi A K, et al. 2011. De novo assembly of Chickpea transcriptome using short reads for gene discovery and marker identification. DNA Res, 18(1): 53–63

    Article  Google Scholar 

  • Gordon-Mills E M, Johan Tas, McCandless E L. 1978. Carrageenans in the cell walls of Chondrus crispus Stack.(Rhodophyceae, Gigartinales). Phycologia, 17(1): 95–104

    Article  Google Scholar 

  • Greer C W, Yaphe W. 1984. Characterization of hybrid (beta-kappa-gamma) carrageenan from Eucheuma gelatinae J. Agardh (Rhodophyta, Solieriaceae) using carrageenases, infrared and 13C-nuclear magnetic resonance spectroscopy. Bot Mar, 27(10): 473–478

    Google Scholar 

  • Imeson A P. 2000. Carrageenan. In: Phillips G O, Williams P A, eds. UK Handbook of Hydrocolloids. Cambridge, UK: Woodhead Publishing Limited, 87–102

    Google Scholar 

  • Johnson M T J, Carpenter E J, Tian Z J, et al. 2012. Evaluating methods for isolating total RNA and predicting the success of sequencing phylogenetically diverse plant transcriptomes. PLoS One, 7(11): e50226

    Article  Google Scholar 

  • Kanehisa M, Goto S, Kawashima S, et al. 2004. The KEGG resource for deciphering the genome. Nucleic Acids Res, 32(Database issue): D277–280

    Article  Google Scholar 

  • Li Bo, Dewey C N. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12: 323

    Article  Google Scholar 

  • Li Tianyong, Ren Lei, Zhou Guan, et al. 2012. A suitable method for extracting total RNA from red algae. Transactions of Oceanology and Limnology (in Chinese), 4: 64–71

    Google Scholar 

  • Li Ruiqiang, Zhu Hongmei, Ruan Jue, et al. 2010. De novo assembly of human genomes with massively parallel short read sequencing. Genome Research, 20: 265–272

    Article  Google Scholar 

  • Lobban C, Harrison P. 1994. Seaweed Ecology and Physiology. Cambridge: Cambridge University Press

    Book  Google Scholar 

  • Luo Ruibang, Liu Binghang, Xie Yinlong, et al. 2012. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience, 1: 18

    Article  Google Scholar 

  • McHugh D J. 2003. A Guide to the Seaweed Industry: FAO Fisheries Technical Paper No. 441. Rome: FAO

    Google Scholar 

  • Moriya Y, Itoh M, Okuda S, et al. 2007. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res, 35(Web Server issue): W182–185

    Article  Google Scholar 

  • Mortazavi A, Williams B A, Mccue K, et al. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 5(7): 621–628

    Article  Google Scholar 

  • Nagalakshmi U, Wang Z, Waern K, et al. 2008. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science, 320(5881): 1344–1349

    Article  Google Scholar 

  • Romualdi C, Bortoluzzi S, D’Alessi F, et al. 2003. IDEG6: a web tool for detection of differentially expressed genes in multiple tag sampling experiments. Physiological Genomics, 12(2): 159–162

    Google Scholar 

  • Rudolph B. 2000. Seaweed products: red algae of economic significance. In: Martin R E, Carter E P, Flick Jr G J, et al., eds. Marine and Freshwater Products Handbook. Lancaster, PA (USA): Technomic Publishing Co, 519–529

    Google Scholar 

  • Santos G A. 1989. Carrageenans of species of Eucheuma J. Agardh and Kappaphycus Doty (Solieriaceae, Rhodophyta). Aquat Bot, 36(1): 55–67

    Article  Google Scholar 

  • Sayers E W, Barrett T, Benson D A, et al. 2012. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res, 40(Database issue): D13–25

    Article  Google Scholar 

  • Tatusov R L, Fedorova N D, Jackson J D, et al. 2003. The COG database: an updated version includes eukaryotes. BMC Bioinformatics, 4: 41

    Article  Google Scholar 

  • Trapnell C, Williams B A, Pertea G, et al. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 28(5): 511–515

    Article  Google Scholar 

  • Tseng C K, Lobban C S, Wynne M J. 1981. The Biology of Seaweeds. Oxford: Blackwell Sci Publ

    Google Scholar 

  • Usov A. 1998. Structural analysis of red seaweed galactans of agar and carrageenan groups. Food Hydrocolloids, 12(3): 301–308

    Article  Google Scholar 

  • van de Velde F, Knutsen S H, Usov A I, et al. 2002. 1H and 13C high resolution NMR spectroscopy of carrageenans: application in research and industry. Trends Food Sci Tech, 13(3): 73–93

    Article  Google Scholar 

  • Wang Xiaowei, Luan Junbo, Li Junming, et al. 2010. De novo characterization of a whitefly transcriptome and analysis of its gene expression during development. BMC Genomics, 11: 400

    Article  Google Scholar 

  • Yuan Yuan, Song Lipu, Li Minhui, et al. 2012. Genetic variation and metabolic pathway intricacy govern the active compound content and quality of the Chinese medicinal plant Lonicera japonica thunb. BMC Genomics, 13: 195

    Article  Google Scholar 

  • Zdobnov E M, Apweiler R. 2001. InterProScan—an integration platform for the signature-recognition methods in InterPro. Bioinformatics, 17(9): 847–848

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xumin Wang or Jun Yu.

Additional information

Foundation item: The National Natural Science Foundation of China under contract Nos 31140070, 31271397 and 41206116; the algal transcriptome sequencing was supported by 1KP Project (www.onekp.com).

Contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, L., Wu, S., Sun, J. et al. De novo sequencing and comparative analysis of three red algal species of Family Solieriaceae to discover putative genes associated with carrageenan biosysthesis. Acta Oceanol. Sin. 33, 45–53 (2014). https://doi.org/10.1007/s13131-014-0440-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-014-0440-7

Key words

Navigation