Skip to main content
Log in

Cotidal charts and tidal power input atlases of the global ocean from TOPEX/Poseidon and JASON-1 altimetry

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

The global distributions of eight principal tidal constituents, M2, S2, K1, O1, N2, K2, P1, and Q1, are derived using TOPEX/Poseidon and JASON-1(T/P-J) satellite altimeter data for 16 a. The intercomparison of the derived harmonics at 7000 subsatellite track crossover points shows that the root mean square (RMS) values of the tidal height differences of the above eight constituents range from 1.19 cm to 2.67 cm, with an average of about 2 cm. The RMS values of the tidal height differences between T/P-J solutions and the harmonics from ground measurements at 152 tidal gauge stations for the above constituents range from 0.34 cm to 1.08 cm, and the relative deviations range from 0.031 to 0.211. The root sum square of the RMS differences of these eight constituents is 2.12 cm, showing the improvement of the present model over the existing global ocean tidal models. Based on the obtained tidal model the global ocean tidal energetics is studied and the global distribution of the tidal power input density by tide-generating force of each constituent is calculated, showing that the power input source regions of semidiurnal tides are mainly concentrated in the tropical belt between 30°S and 30°N, while the power input source regions of diurnal tides are mainly concentrated off the tropic oceans. The global energy dissipation rates of the M2, S2, K1, O1, N2, P1, K2 and Q1 tides are 2.424, 0.401, 0.334, 0.160, 0.113, 0.035, 0.030 and 0.006 TW, respectively. The total global tidal dissipation rate of these eight constituents amounts to 3.5 TW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bao J, Chao D, Li J C. 2000. Tidal harmonic analysis near crossovers of TOPEX/POSEIDON ground track in South China Sea. Acta Geodaetica et Cartographica Sinica (in Chinese), 29(1): 17–23

    Google Scholar 

  • Benada J R. 1997. Merged GDR (TOPEX/POSEIDON), Generation B, User’s Handbook. Jet Propul Lab, Calif Inst of Technol Pasadena: PODAAC.

  • Cartwright D E, Ray R D. 1991. Energetics of global ocean tides from Geosat altimetry. J Geophys Res, 96(C9): 16897–16912

    Article  Google Scholar 

  • Desai S D, Wahr J M. 1995. Empirical ocean tide models estimated from TOPEX/POSEIDON altimetry. J Geophys Res, 100(C12): 25205–25228

    Article  Google Scholar 

  • Dong X, Ma J, Huang C et al. 2002. Tidal information of the Yellow and East China Seas from TOPEX/POSEIDON satellite altimetric data. Oceanologia et Limnologia Sinica (in Chinese), 33(1): 7–13

    Google Scholar 

  • Eanes R J. 1994. Diurnal and semidiurnal tides from TOPEX/POSEIDON altimetry (abstract). EOS Trans. AGU Spring Meet. 75(16): Suppl. 108

  • Egbert G D, Bennett A, Foreman M. 1994. TOPEX/POSEIDON tides estimated using a global inverse model. J Geophys Res, 99(C12): 24821–24852

    Article  Google Scholar 

  • Egbert G D, Erofeeva S Y. 2002. Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 19(2): 183–204

    Article  Google Scholar 

  • Egbert G D, Ray R D. 2000. Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405: 775–778

    Article  Google Scholar 

  • Fang Y, Choi B H, Fang G. 2000. Global ocean tides from Geosat altimetry by quasi-harmonic analysis. Chinese Journal of Oceanology and Limnology, 18(3): 193–198

    Article  Google Scholar 

  • Fang G, Wang Y, Wei Z, et al. 2004. Empirical cotidal charts of the Bohai, Yellow and China Seas from 10 years of TOPEX/POSEIDON altimetry. J Geophys Res, 109(C11006), doi: 10.1029/2004JC002484

  • Fang G, Zheng W, Chen Z, et al. 1986. Analysis and Prediction of Tides and Tidal Currents (in Chinese). Beijing: China Ocean Press

    Google Scholar 

  • Hendershott M C. 1972. The effects of solid earth deformation on global ocean tides. Geophysical Journal International, 29(4): 389–402

    Article  Google Scholar 

  • Hu J Y, Kawamra H, Hong H S, et al. 2001. Tidal features in the China seas and their adjacent sea areas as derived from TOPEX/Poseidon altimeter data. Chinese Journal of Oceanology and Limnology, 19(4): 293–305

    Article  Google Scholar 

  • Kantha L H, Craig T, Lopez J W, et al. 1995. Barotropic tides in the global oceans from a nonlinear tidal model assimilating altimetric tides 2. Altimetric and geophysical implications. J Geophys Res, 100(C12): 25309–25317

    Google Scholar 

  • Le Provost C, Genco M L, Lyard F, et al. 1994. Spectroscopy of the ocean tides from a finite element hydrodynamic model. J Geophys Res, 99(C12): 24777–24797

    Article  Google Scholar 

  • Lefevre F, Lyard F H, Le Provost C, et al. 2002. FES99: a global tide finite element solution assimilating tide gauge and altimetric information. J Atmos Oceanic Technol, 19(9): 1345–1356

    Article  Google Scholar 

  • Li Y, Cai W, Li L, et al. 2002. The tide characteristics of the seas adjacent to Fujian and Taiwan derived from TOPEX/Poseidon altimeter data. Acta Oceanologica Sinica (in Chinese), 24(Supp 1), 154–162

    Google Scholar 

  • Li L, Wu R, Li Y, et al. 1999. A preliminary analysis of shallow water tidal aliasing in TOPEX/Poseidon altimetric data. Acta Oceanologica Sinica (in Chinese), 21(3): 1–14

    Google Scholar 

  • Li P, Zuo J, Li L, et al. 2002. Orthogonalized convolution method for analysis of South China Sea tidal data from TOPEX/Poseidon. Oceanologia et Limnologia Sinica (in Chinese), 33(3): 287–295

    Google Scholar 

  • Liu K, Ma J, Han G, et al. 2002. Tidal harmonic analysis of TOPEX/Poseidon data in Northwest Pacific by introducing difference-ratio relations. Acta Oceanologica Sinica (in Chinese), 24(4): 2–10

    Google Scholar 

  • Lyard F, Lefevre F, Letellier T, et al. 2006. Modelling the global ocean tides: modern insights from FES2004. Ocean Dynamics, 56: 394–415

    Article  Google Scholar 

  • Mao Q, Shi P, Qi Y. 2002. Tide separation from the altimetry data using harmonic analysis method. The Ocean Engineering (in Chinese), 20(1): 41–45

    Google Scholar 

  • Matsumoto K, Takanezawa T, Ooe M. 2000. Ocean tide models developed by assimilating TOPEX/Poseidon altimeter data into hydrodynamical model: a global model and a regional model around Japan. Journal of Oceanography, 56: 567–581

    Article  Google Scholar 

  • Ray R D. 1998. Ocean self-attraction and loading in numerical tidal models. Marine Geodesy, 21(3): 181–192

    Article  Google Scholar 

  • Schwiderski E W. 1980. On charting global ocean tides. Reviews of Geophysics and Space Physics, 18: 243–268

    Article  Google Scholar 

  • Shen C, Zuo J C, Du L, et al. 2006. Comparison and analysis of world ocean tides. Journal of Ocean University of China (in Chinese), 36(4): 523–529

    Google Scholar 

  • Wahr J M. 1981. Body tides on an elliptical, rotating, elastic and oceanless Earth, Geophys. J R Astr Soc, 64(3): 677–703

    Article  Google Scholar 

  • Wang Y, Fang G, Wei Z, et al. 2010. Accuracy assessment of global ocean tide models base on satellite altimetry. Advances in Earth Science (in Chinese), 25(4): 43–49

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yihang Wang.

Additional information

Foundation item: The National Natural Science Foundation of China under contract No. 40676009 and 40606006; the Basic Research Project of Qingdao Science and Technology Program under contract No. 11-1-4-98-jch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Fang, G., Wei, Z. et al. Cotidal charts and tidal power input atlases of the global ocean from TOPEX/Poseidon and JASON-1 altimetry. Acta Oceanol. Sin. 31, 11–23 (2012). https://doi.org/10.1007/s13131-012-0216-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-012-0216-x

Key words

Navigation