Skip to main content
Log in

Seasonal variation of eddy kinetic energy in the South China Sea

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

Mesoscale eddy activity and its modulation mechanism in the South China Sea (SCS) are investigated with newly reprocessed satellite altimetry observations and hydrographic data. The eddy kinetic energy (EKE) level of basin-wide averages show a distinct seasonal cycle with the maximum in August–December and the minimum in February–May. Furthermore, the seasonal pattern of EKE in the basin is dominated by region offshore of central Vietnam (OCV), southwest of Taiwan Island (SWT), and southwest of Luzon (SWL), which are also the breeding grounds of mesoscale eddies in the SCS. Instability theory analysis suggests that the seasonal cycle of EKE is modulated by the baroclinic instability of the mean flow. High eddy growth rate (EGR) is found in the active eddy regions. Vertical velocity shear in the upper 50–500 m is crucial for the growth of baroclinic instability, leading to seasonal EKE evolution in the SCS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonov J, Locarnini R, Boyer T, et al. 2006. World Ocean Atlas 2005, Vol. 2, Salinity. In: Levitus S, ed. NOAA Atlas NESDIS, Vol. 62. Silver Spring, 182

  • Beckmann A, Böning C W, Köberle C, et al. 1994. Effects of increased horizontal resolution in a simulation of the North Atlantic Ocean. Journal of Physical Oceanography, 24(2): 326–344

    Article  Google Scholar 

  • Charney J. 1971. Geostrophic turbulence. Journal of Atmospheric Sciences, 28: 1087–1094

    Article  Google Scholar 

  • Cheng Xuhua, Qi Yiquan. 2010. Variations of eddy kinetic energy in the South China Sea. Journal of Oceanography, 66(1): 85–94

    Article  Google Scholar 

  • Ducet N, Traon P Y Le, Reverdin G. 2000. Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J Geophys Res, 105(C8): 19477–19498

    Article  Google Scholar 

  • Eady E T. 1949. Long waves and cyclone waves. Tellus, 1(3): 33–52

    Article  Google Scholar 

  • Emery W J. 1983. On the geographical variability of the upper level mean and eddy fields in the north Atlantic and north Pacific. Journal of Physical Oceanography, 13(2): 269–291

    Article  Google Scholar 

  • Fang G, Fang W, Fang Y, et al. 1998. A survey of studies on the South China Sea upper ocean circulation. Acta Oceanographica Taiwanica, 37: 1–16

    Google Scholar 

  • Gan J, Li H, Curchitser E N, et al. 2006. Modeling South China Sea circulation: response to seasonal forcing regimes. J Geophys Res, 111(C6): C06034

    Article  Google Scholar 

  • Gill, A. E., Green J. S. A., Simmons A. J. 1974. Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies. Deep Sea Research and Oceanographic Abstracts, 21(7): 499–508, IN491: 509–528

    Article  Google Scholar 

  • Halliwell G R, Olson D B, Peng G. 1994. Stability of the Sargasso Sea subtropical frontal zone. Journal of Physical Oceanography, 24(6): 1166–1183

    Article  Google Scholar 

  • He Zhigang, Wang Dongxiao, Hu Jianyu. 2002. Features of eddy kinetic energy and variations of upper circulation in the South China Sea. Acta Oceanologica Sinica, 21(2): 305–314

    Google Scholar 

  • Ho C R, Kuo N J, Zheng Q, et al. 2000. Dynamically active areas in the South China Sea detected from TOPEX/POSEIDON satellite altimeter data. Remote Sensing of Environment, 71(3): 320–328

    Article  Google Scholar 

  • Hwang C, Chen S A. 2000. Circulations and eddies over the South China Sea derived from TOPEX/Poseidon altimetry. J Geophys Res, 105(C10): 23943–23965

    Article  Google Scholar 

  • Le Traon P Y, Nadal F, Ducet N. 1998. An improved mapping method of multisatellite altimeter data. Journal of Atmospheric and Oceanic Technology, 15(2): 522–534

    Article  Google Scholar 

  • Le Traon P Y, Ogor F. 1998. ERS-1/2 orbit improvement using TOPEX/POSEIDON: the 2 cm challenge. J Geophys Res, 103(C4): 8045–8057

    Article  Google Scholar 

  • Locarnini R, Mishonov A, Antonov J, et al. 2006. World Ocean Atlas 2005, Vol. 1, Temperature. In: Levitus S, ed. NOAA Atlas NESDIS, Vol. 61. Silver Spring, 182

  • Lorenz E N. 1955. Available potential energy and the maintenance of the general circulation. Tellus, 7(2): 157–167

    Article  Google Scholar 

  • Metzger E J. 2003. Upper ocean sensitivity to wind forcing in the South China Sea. Journal of Oceanography, 59(6): 783–798

    Article  Google Scholar 

  • Morimoto A, Yoshimoto K, Yanagi T. 2000. Characteristics of sea surface circulation and eddy field in the South China Sea revealed by satellite altimetric data. Journal of Oceanography, 56(3): 331–344

    Article  Google Scholar 

  • Qiu Bo. 1999. Seasonal eddy field modulation of the north Pacific subtropical countercurrent: TOPEX/Poseidon observations and theory. Journal of Physical Oceanography, 29(10): 2471–2486

    Article  Google Scholar 

  • Qiu Bo, Kelly K A, Joyce T M. 1991. Mean flow and variability in the Kuroshio extension from geosat altimetry data. J Geophys Res, 96(C10): 18491–18507

    Article  Google Scholar 

  • Qu Tangdong. 2000. Upper-layer circulation in the South China Sea. Journal of Physical Oceanography, 30(6): 1450–1460

    Article  Google Scholar 

  • Richardson P L. 1983. Eddy kinetic energy in the north Atlantic from surface drifters. J Geophys Res, 88(C7): 4355–4367

    Article  Google Scholar 

  • Scharffenberg M G, Stammer D. 2010. Seasonal variations of the large-scale geostrophic flow field and eddy kinetic energy inferred from the TOPEX/Poseidon and Jason-1 tandem mission data. J Geophys Res, 115(C2): C02008

    Article  Google Scholar 

  • Shaw P T, Chao S Y. 1994. Surface circulation in the South China Sea. Deep-Sea Research. Part I. Oceanographic Research Papers, 41(11–12): 1663–1683

    Article  Google Scholar 

  • Shaw P T, Chao S Y, Fu L L. 1999. Sea surface height variations in the South China Sea from satellite altimetry. Oceanologica Acta, 22(1): 1–17

    Article  Google Scholar 

  • Shaw P T, Chao S Y, Liu K K, et al. 1996. Winter upwelling off Luzon in the northeastern South China Sea. J Geophys Res, 101(C7): 16435–16448

    Article  Google Scholar 

  • Stammer D. 1997a. Steric and wind-induced changes in TOPEX/POSEIDON large-scale sea surface topography observations. J Geophys Res, 102(C9): 20987–21009

    Article  Google Scholar 

  • Stammer D. 1997b. Global characteristics of ocean variability estimated from regional TOPEX/POSEIDON Altimeter Measurements. Journal of Physical Oceanography, 27(8): 1743–1769

    Article  Google Scholar 

  • Stammer D. 1998. On eddy characteristics, eddy transports, and mean flow properties. Journal of Physical Oceanography, 28(4): 727–739

    Article  Google Scholar 

  • Wang Dongxiao, Xu Hongzhou, Lin Jing, et al. 2008. Anticyclonic eddies in the northeastern South China Sea during winter 2003/2004. Journal of Oceanography, 64(6): 925–935

    Article  Google Scholar 

  • Wang Guihua, Chen Dake, Su Jilan. 2006. Generation and life cycle of the dipole in the South China Sea summer circulation. J Geophys Res, 111(C6): C06002

    Article  Google Scholar 

  • Wang Guihua, Su Jilan, Chu P C. 2003. Mesoscale eddies in the South China Sea observed with altimeter data. Geophys Res Lett, 30(21): 2121

    Article  Google Scholar 

  • Willebrand J, Philander S, Pacanowski R. 1980. The oceanic response to large-scale atmospheric disturbances. Journal of Physical Oceanography, 10(3): 411–429

    Article  Google Scholar 

  • Wu Xiangyu, Xie Qiang, He Zhigang, et al. 2008. Free and forced Rossby waves in the western South China Sea inferred from Jason-1 satellite altimetry data. Sensors, 8(6): 3633–3642

    Article  Google Scholar 

  • Wyrtki K, Magaard L, Hager J. 1976. Eddy energy in the oceans. J Geophys Res, 81(15): 2641–2646

    Article  Google Scholar 

  • Xie Shangping, Xie Qiang, Wang Dongxiao, et al. 2003. Summer upwelling in the South China Sea and its role in regional climate variations. J Geophys Res, 108(C8): 3261

    Article  Google Scholar 

  • Xiu Peng, Chai Fei, Shi Lei, et al. 2010. A census of eddy activities in the South China Sea during 1993–2007. J Geophys Res, 115(C3): C03012

    Article  Google Scholar 

  • Zang X, Wunsch C. 2001. Spectral description of low-frequency oceanic variability. Journal of Physical Oceanography, 31(10): 3073–3095

    Article  Google Scholar 

  • Zhai X, Greatbatch R J, Kohlmann J D. 2008. On the seasonal variability of eddy kinetic energy in the Gulf Stream region. Geophys Res Lett, 35(24): L24609

    Article  Google Scholar 

  • Zhuang Wei, Du Yan, Wang Dongxiao, et al. 2010. Pathways of mesoscale variability in the South China Sea. Chinese Journal of Oceanology and Limnology, 28(5): 1055–1067

    Article  Google Scholar 

  • Zhuang Wei, Xie Shangping, Wang Dongxiao, et al. 2010, Intraseasonal variability in sea surface height over the South China Sea. J Geophys Res, 115(C4): C04010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dakui Wang.

Additional information

Foundation item: The National Natural Science Foundation of China under contract No. 41076011, 40531006, 41106024 and 40976014; and the National Basic Research Program of China under contract No. 2011CB403600.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Wang, D., Liu, G. et al. Seasonal variation of eddy kinetic energy in the South China Sea. Acta Oceanol. Sin. 31, 1–15 (2012). https://doi.org/10.1007/s13131-012-0170-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-012-0170-7

Key words

Navigation