Skip to main content
Log in

Tracing the evolution of trophic specialisation and mode of attack behaviour in the ground spider family Gnaphosidae

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

The evolutionary history of prey specialisation differs among spider species, particularly among active wandering species which have evolved a variety of prey-capture tactics. Here, we conducted a comparative analysis of prey specialisation and prey capture behaviour in Gnaphosidae. We used nine species each representing a different genus and investigated their acceptance of spiders and ants as prey, on which they may specialise, and their attack behaviour. Then we collected such data for another about 20 species from literature. The studied species used only either biting or silk (followed by biting) to constrain prey during attack. For each species, we measured selected morphological characteristics—specifically, the relative sizes of cheliceral fangs and spinnerets as well as the number of spigots on spinnerets—and related them to the ability to catch spiders (araneophagy) and ants (myrmecophagy) and mode of attack behaviour. We found the relative fang size to be significantly shorter for myrmecophagous species. Other traits were not related to prey specialisation or attack behaviour. They used silk particularly for larger prey. Use of silk was a conditional strategy in some species. We reconstructed the phylogenetic relationships among the studied genera using molecular and morphological data. We found that araneophagy was frequent but myrmecophagy was rare among recent taxa. Comparative analysis revealed that araneophagy is an ancestral state, while myrmecophagy was less likely and repeatedly lost. The use of silk for prey immobilisation was also as likely as unlikely for ancestors and has been repeatedly lost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anonymous (2006). https://natureitems.blogspot.com. Accessed 1 July 2019.

  • Atkinson, R. (2015). The find-a-spider guide for the spiders of Southern Queensland. http://www.findaspider.org.au/find/family.htm. Accessed 1 August 2019.

  • Azevedo, H. F. G., Griswold, C. E., & Santos, A. J. (2018). Systematics and evolution of ground spiders revisited (Araneae, Dionycha, Gnaphosidae). Cladistics, 34, 579–626.

    Article  PubMed  Google Scholar 

  • Beaulieu, J. M., O’Meara, B. C., & Donoghue, M. J. (2013). Identifying hidden rate changes in the evolution of a binary morphological character: the evolution of plant habit in campanulid angiosperms. Systematic Biology, 62(5), 725–737.

    Article  PubMed  Google Scholar 

  • Bristowe, W. S. (1958). The world of spiders. London: William Collins Press.

    Google Scholar 

  • Cardoso, P., Pekár, S., Jocqué, R., & Coddington, J. A. (2011). Global patterns of guild composition and functional diversity of spiders. PLoS One, 6(6), e21710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coddington, J. A., Agnarsson, I., Hamilton, C. A., & Bond, J. E. (2019). Spiders did not repeatedly gain, but repeatedly lost, foraging webs. PeerJ, 7, e6703.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dippenaar-Schoeman, A. S., Haddad, C. R., Foord, S. H., Lyle, R., Lotz, L. N., Helberg, L., Mathebula, S., Van den Berg, A., Van den Berg, A. M., Van Niekerk, E., & Jocqué, R. (2010). First atlas of the spiders of South Africa. South African National Survey of Arachnida. Technical Report, 1.

  • Edwards, G., & Stiles, J. T. (2011). The first North American records of the synanthropic spider Cithaeron praedonius OP-Cambridge (Araneae:Gnaphosoidea:Cithaeronidae), with notes on its biology. Insecta Mundi, 187, 1–7.

    Google Scholar 

  • Fernández, R., Kallal, R. J., Dimitrov, D., Ballesteros, J. A., Arnedo, M. A., Giribet, G., & Hormiga, G. (2018). Phylogenomics, diversification dynamics, and comparative transcriptomics across the spider tree of life. Current Biology, 28(9), 1489–1497.

    Article  PubMed  CAS  Google Scholar 

  • Folmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome C oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294–297.

    CAS  PubMed  Google Scholar 

  • Goloboff, P. A. (2000). The family Gallieniellidae (Araneae, Gnaphosoidea) in the Americas. Journal of Arachnology, 28, 1–6.

    Article  Google Scholar 

  • Goloboff, P. A., & Catalano, S. A. (2016). TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics, 32, 221–238.

    Article  PubMed  Google Scholar 

  • Goloboff, P. A., Farris, S., & Nixon, K. (2008). TNT, a free program for phylogenetic analysis. Cladistics, 24, 774–786.

    Article  Google Scholar 

  • Grimm, U. (1985). Die Gnaphosidae Mitteleuropas (Arachnida, Araneae). Abhandlungen des Naturwissenschaftlichen Vereins in Hamburg (NF), 26, 1–318.

    Google Scholar 

  • Guarisco, H. (2007). Checklist of Kansas ground spiders. Emporia: The Kansas School Naturalist.

    Google Scholar 

  • Harland, D. P., & Jackson, R. R. (2006). A knife in the back: use of prey-specific attack tactics by araneophagic jumping spiders (Araneae: Salticidae). Journal of Zoology, 269, 285–290.

    Article  Google Scholar 

  • Heller, G. (1974). Zur Biologie der ameisenfressenden Spinne Callilepis nocturna Linnaeus 1758 (Araneae, Drassodidae). PhD Thesis. Mainz: Johannes Gutenberg Universitat.

  • Hölldobler, B., & Wilson, E. O. (1990). The ants. Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Huelsenbeck, J. P., & Ronquist, F. R. (2001). MrBayes: Bayesian inference of phylogeny. Biometrics, 17, 754–755.

    CAS  Google Scholar 

  • Jackson, R. R. (1992). Eight-legged tricksters: spiders that specialize at catching other spiders. Bioscience, 42, 590–598.

    Article  Google Scholar 

  • Jäger, P. (2002). Über eine bemerkenswerte Verhaltensweise von Scotophaeus scutulatus (Araneae: Gnaphosidae). Arachnologische Mitteilungen, 24, 72–75.

    Article  Google Scholar 

  • Jarman, E. A. R., & Jackson, R. R. (1986). The biology of Taieria erebus (Araneae, Gnaphosidae), an araneophagic spider from New Zealand: silk utilisation and predatory versatility. New Zealand Journal of Zoology, 13, 521–541.

    Article  Google Scholar 

  • Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhn-Nentwig, L., Stöcklin, R., & Nentwig, W. (2011). Venom composition and strategies in spiders: is everything possible? Advances in Insect Physiology, 40, 1–86.

    Article  Google Scholar 

  • Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Letunic, I., & Bork, P. (2016). Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Research, 44, 242–245.

    Article  CAS  Google Scholar 

  • Levy, L. (1999). Spiders of six uncommon Drassodine genera (Araneae: Gnaphosidae) from Israel. Israel Journal of Zoology, 45, 427–452.

    Google Scholar 

  • Liu, J., May-Collado, J. L., Pekár, S., & Agnarsson, I. (2016). A revised and dated phylogeny of cobweb spiders (Araneae, Araneoidea,Theridiidae): a predatory Cretaceous lineage diversifying in the era of the ants (Hymenoptera, Formicidae). Molecular Phylogenetics and Evolution, 94, 658–675.

    Article  PubMed  Google Scholar 

  • Líznarová, E., & Pekár, S. (2019). Trophic niche and capture efficacy of an ant-eating spider, Euryopis episinoides (Araneae: Theridiidae). Journal of Arachnology, 47(1), 45–51.

    Article  Google Scholar 

  • Michálek, O., Lubin, Y., & Pekár, S. (2019). Nest usurpation: a specialised hunting strategy used to overcome dangerous spider prey. Scientific Reports, 9, 5386.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Michálek, S., Petráková, L., & Pekár, S. (2017). Capture efficiency and trophic adaptations of a specialist and generalist predator: a comparison. Ecology and Evolution, 7, 2756–2766.

    Article  PubMed  PubMed Central  Google Scholar 

  • Michálek, O., Řezáč, M., Líznarová, E., Symondson, W. O. C., & Pekár, S. (2018). Silk versus venom: alternative capture strategies employed by closely related myrmecophagous spiders. Biological Journal of the Linnean Society, 126, 545–554.4.

    Article  Google Scholar 

  • Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans, LA, 1–8.

  • Mukherjee, S., & Heithaus, M. R. (2013). Dangerous prey and daring predators: a review. Biological Reviews, 88, 550–563.

    Article  PubMed  Google Scholar 

  • Murphy, J. A. (2007). Gnaphosid genera of the world (Vol. 1, 2). St Neots: British Arachnological Society.

    Google Scholar 

  • Nanoon, G. R. (1982). Notes on interactions between the spider Eilica puno (Gnaphosidae) and the ant Camponotus inca in the Peruvian Andes. Biotropica, 14(2), 145–148.

    Article  Google Scholar 

  • Nentwig, W., Blick, T., Gloor, D., Hänggi, A., & Kropf, C. (2019). Araneae: spiders of Europe, Version 10. 2019. https://www.araneae.nmbe.ch. Accessed 15 October 2019.

  • Nylander, J. A. A. (2004). MrModeltest v 2.2 (online). Program distributed by the author. Uppsala University: Evolutionary Biology Centre.

  • Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., & Wagner, H. (2017). Vegan: community ecology package. R Package Version 2.4–2. http://CRAN.Rproject.org/package=vegan.

  • Paradis, E. (2006). Analysis of phylogenetics and evolution with R. New York: Springer.

    Book  Google Scholar 

  • Pekár, S. (2004). Predatory behavior of two European ant-eating spiders (Araneae, Zodariidae). Journal of Arachnology, 32(1), 31–41.

    Article  Google Scholar 

  • Pekár, S., & Brabec, M. (2016). Marginal models via GLS: a convenient yet neglected tool for the analysis of correlated data in the behavioural sciences. Ethology, 122, 621–631.

    Article  Google Scholar 

  • Pekár, S., & Brabec, M. (2019). Modern analysis of biological data. 3. Brno: Non-linear Models in R. Masaryk University Press [in Czech].

    Google Scholar 

  • Pekár, S., & Jarab, M. (2011). Life-history constraints in inaccurate Batesian myrmecomorphic spiders (Araneae: Corinnidae, Gnaphosidae). European Journal of Entomology, 108, 255–260.

    Article  Google Scholar 

  • Pekár, S., & Toft, S. (2015). Trophic specialisation in a predatory group: the case of prey-specialised spiders (Araneae). Biological Reviews, 90, 744–761.

    Article  PubMed  Google Scholar 

  • Pekár, S., Coddington, J. A., & Blackledge, T. A. (2012). Evolution of stenophagy in spiders (Araneae): evidence based on the comparative analysis of spider diets. Evolution, 66(3), 776–806.

    Article  PubMed  Google Scholar 

  • Pekár, S., Bočánek, O., Michálek, O., Petráková, L., Haddad, C. R., Šedo, O., & Zdráhal, Z. (2018a). Venom gland size and venom complexity—essential trophic adaptations of venomous predators: a case study using spiders. Molecular Ecology, 27, 4257–4269.

    Article  PubMed  CAS  Google Scholar 

  • Pekár, S., Líznarová, E., Bočánek, O., & Zdráhal, Z. (2018b). Venom of prey-specialized spiders is more toxic to their preferred prey: a result of prey-specific toxins. Journal of Animal Ecology, 87, 1639–1652.

    Article  Google Scholar 

  • Pekár, S., Michalko, R., Korenko, S., Šedo, O., Líznarová, E., Sentenská, L., & Zdráhal, Z. (2013). Phenotypic integration in a series of trophic traits: tracing the evolution of myrmecophagy in spiders (Araneae). Zoology, 116(1), 27–35.

    Article  PubMed  Google Scholar 

  • Pekár, S., Petráková, L., Bulbert, M. W., Whiting, M. J., & Herberstein, M. E. (2017). The golden mimicry complex uses a wide spectrum of defence to deter a community of predators. eLife, 6, e22089.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pekár, S., Šedo, O., Líznarová, E., Stanislav, K., & Zdráhal, Z. (2014). David and Goliath: potent venom of an ant-eating spider (Araneae) enables capture of a giant prey. Naturwissenschaften, 101, 533–540.

    Article  PubMed  CAS  Google Scholar 

  • Petráková, L., Líznarová, E., Pekár, S., Haddad, C. R., Sentenská, L., & Symondson, W. O. C. (2015). Discovery of a monophagous true predator, a specialist termite-eating spider (Araneae: Ammoxenidae). Scientific Reports, 5, 14013.

    Article  PubMed  PubMed Central  Google Scholar 

  • Petráková Dušátková, L., Pekár, S., Michálek, O., Líznarová, E., & Symondson, W. O. C. (2020). Estimation of trophic niches in myrmecophagous spider predators. Scientific Reports, 10, 8683.

    Article  CAS  Google Scholar 

  • Platnick, N. I. (2000). A relimitation and revision of the Australasian ground spider family Lamponidae (Araneae: Gnaphosoidea). Bulletin of the American Museum of Natural History, 245, 1–328.

    Article  Google Scholar 

  • Platnick, N. I., & Shadab, M. U. (1980). A revision of the spider genus Cesonia (Araneae, Gnaphosidae). American Museum of Natural History, 155, 1–66.

    Google Scholar 

  • Platnick, N. I., & Shadab, M. U. (1988). A revision of the American spiders of the genus Micaria (Araneae, Gnaphosidae). American Museum Novitates, 2916, 1–64.

    Google Scholar 

  • R Core Team. (2017). A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing http://www.R-project.org.

    Google Scholar 

  • Řezáč, M., Pekár, S., & Lubin, Y. (2008). How oniscophagous spiders overcome woodlouse armour. Journal of Zoology, 275(1), 64–71.

    Article  Google Scholar 

  • Rodriguez, F., Oliver, J. L., Marin, A., & Medina, J. R. (1990). The general stochastic model of nucleotide substitution. Journal of Theoretical Biology, 142, 485–501.

    Article  CAS  PubMed  Google Scholar 

  • Sentenská, L., & Pekár, S. (2013). Mate with the young, kill the old: reversed sexual cannibalism and male mate choice in the spider Micaria sociabilis (Araneae: Gnaphosidae). Behavioral Ecology and Sociobiology, 67, 1131–1139.

    Article  Google Scholar 

  • Sentenská, L., & Pekár, S. (2014). Eat or not to eat: Reversed sexual cannibalism as a male foraging strategy in the spider Micaria sociabilis (Araneae: Gnaphosidae). Ethology, 120, 511–518.

    Article  Google Scholar 

  • Van den Berg, A., & Dippenaar-Schoeman, A. S. (1991). Ground-living spiders from an area where the harvester termite Hodotermes mossambicus occurs in South Africa. Phytophylatica, 23, 247–253.

    Google Scholar 

  • Wheeler, W. C., Coddington, J. A., Crowley, L. M., Dimitrov, D., Goloboff, P. A., Griswold, C. E., Hormiga, G., Prendini, L., Ramírez, M. J., Sierwald, P., Almeida-Silva, L. M., Álvarez-Padilla, F., Arnedo, M. A., Benavides, L. R., Benjamin, S. P., Bond, J. E., Grismado, C. J., Hasan, E., Hedin, M., Izquierdo, M. A., Labarque, F. M., Ledford, J., Lopardo, L., Maddison, W. P., Miller, J. A., Piacentini, L. N., Platnick, N. I., Polotow, D., Silva-Dávila, D., Scharff, N., Szűts, T., Ubick, D., Vink, C., Wood, H. M., & Zhang, J. X. (2017). The spider tree of life: phylogeny of Araneae based on target-gene analyses from an extensive taxon sampling. Cladistics, 33(6), 574–616.

    Article  PubMed  Google Scholar 

  • Whitehouse, M. E. A., & Lubin, Y. (1998). Relative seasonal abundance of five spider species in the Negev desert: intraguild interactions and their implications. Israel Journal of Zoology, 44, 187–200.

    Google Scholar 

  • Wolff, O. J., Řezáč, M., Krejčı́, T., & Gorb, S. N. (2017). Hunting with sticky tape: functional shift in silk glands of araneophagous ground spiders (Gnaphosidae). Journal of Experimental Biology, 220, 2250–2259.

    Article  Google Scholar 

  • Wood, S. N. (2006). Generalized additive models. An Introduction with R. Chapman & Hall/CRC.

  • Wood, H. M., Griswold, C. E., & Gillespie, R. G. (2012). Phylogenetic placement of pelican spiders (Archaeidae, Araneae), with insight into evolution of the “neck” and predatory behaviours of the superfamily Palpimanoidea. Cladistics, 28(6), 598–626.

    Article  PubMed  Google Scholar 

  • World Spider Catalog. (2019). Version 20.5. Natural History Museum Bern. http://wsc.nmbe.ch. Accessed 14 October 2019.

  • Zwickl, D. J., (2006). Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. thesis. Austin: University of Texas.

Download references

Acknowledgements

NB was supported by a grant from the International Visegrad Fund (51810013 Act No. 40/1964), which allowed her to perform her PhD stay in Czechia. We would like to thank C. Haddad, M. Isaia, O. Michálek, and S. Korenko for their very kind help with collecting spiders in the field.

Contribution of authors

NB performed the experiments and took measurements; SP conceived the study, designed the study, collected spiders, and analysed data; and AT sequenced specimens and performed phylogenetic analyses. All authors wrote the manuscript.

Data accessibility

Sequences of Drassodex simoni and Pterotricha sp. were submitted to the GenBank sequence database and are available in Online Supporting Information (Table S1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stano Pekár.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 268 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baydizada, N., Tóthová, A. & Pekár, S. Tracing the evolution of trophic specialisation and mode of attack behaviour in the ground spider family Gnaphosidae. Org Divers Evol 20, 551–563 (2020). https://doi.org/10.1007/s13127-020-00453-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-020-00453-0

Keywords

Navigation