Mixed colonies and hybridisation of Messor harvester ant species (Hymenoptera: Formicidae)

  • Florian M. Steiner
  • Bernhard Seifert
  • Donato A. Grasso
  • Francesco Le Moli
  • Wolfgang Arthofer
  • Christian Stauffer
  • Ross H. Crozier
  • Birgit C. Schlick-SteinerEmail author
Original Article


The Mediterranean harvester ant species Messor minor, M. cf. wasmanni, and M. capitatus can co-occur in the same habitat. In Italian populations, we encountered colonies that contained workers from more than one species as identified via standard morphology, as well as colonies with workers that appeared to be morphologically intermediate between species. This unusual finding required further analysis. We analysed such colonies using microsatellites, mitochondrial DNA and refined morphometrics, and a simple inference key for the colony-level interpretation of data from the three sources combined. We infer that Messor minor and M. cf. wasmanni engage in bidirectional interspecific gene flow. Hybrids between these two species are inferred to produce fertile offspring, which would indicate that barriers to hybridisation do not exist or can be completely overcome. This is unexpected, given that they are non-sister species and broadly sympatric in nature. Our findings also indicate the possible occurrence of hybrid-hybrid crosses, a phenomenon rarely observed in ants. We cautiously interpret the data at hand as in support of the interspecific gene flow considerably shaping the genetic makeup of populations, raising the question about a potential adaptive value of this hybridisation. Messor capitatus mixes with hybrids of the other two species, but we found no indication of hybridisation involving this species. We discuss various hypotheses on the causations of colony mixing and hybridisation in the three Messor species at the proximate and ultimate level.


Hybridisation Bidirectional interspecific gene flow Non-sister species Inference key 



Francesco Le Moli, doyen of research on the behavioural ecology of ants, passed away when the manuscript was at an early stage. Ross H. Crozier, pioneer of sociobiology in both theoretical and empirical genetic analysis, passed away when the manuscript was at the stage of revision. The remaining authors gratefully dedicate this paper to their memory. We thank Katsusuke Yamauchi for sharing unpublished data, Sandor Csősz, Heino Konrad, Susanne Krumböck, Karl Moder, Fabrizio Rigato, Andrea Stradner and Phil S. Ward for multiple support, and Michael Stachowitsch for a linguistic revision of the manuscript. Four anonymous referees and Editor-in-Chief Olaf R. P. Bininda-Emonds provided important input. RHC was supported by the Australian Research Council (DP0665890); BCS and FMS were supported by the Austrian Science Fund (J2639-B17, J2642-B17).

Supplementary material

13127_2011_45_MOESM1_ESM.pdf (47 kb)
Esm 1 Sampling scheme (PDF 46 kb)
13127_2011_45_MOESM2_ESM.pdf (44 kb)
Esm 2 Primary morphometric data (PDF 44 kb)


  1. Allaby, M. (1999). A dictionary of zoology. Oxford: Oxford University Press.Google Scholar
  2. André, E. (1883). Les fourmis. In E. André (Ed.), Species des hyménoptères d’Europe et d’Algérie. Tome deuxieme (pp. 345–404). Beaune: Edmond André.Google Scholar
  3. Arnold, M. L. (2006). Evolution through genetic exchange. Oxford: Oxford University Press.Google Scholar
  4. Arthofer, W., Schlick-Steiner, B. C., Steiner, F. M., Konrad, H., Espadaler, X., & Stauffer, C. (2005). Microsatellite loci for the study of habitat fragmentation in the harvester ant Messor structor. Conservation Genetics, 6, 859–861.CrossRefGoogle Scholar
  5. Baer, B. (2011). The copulation biology of ants (Hymenoptera: Formicidae). Myrmecological News, 14, 55–68.Google Scholar
  6. Baroni Urbani, C. (1971). Catalogo delle specie di Formicidae d’Italia (Studi sulla mirmecofauna d'Italia X). Memorie della Società Entomologica Italiana, 50, 5–287.Google Scholar
  7. Barton, N. H. (2001). The role of hybridization in evolution. Molecular Ecology, 10, 551–568.PubMedCrossRefGoogle Scholar
  8. Beckenbach, A. T. (2009). Numts and mitochondrial pseudogenes. Myrmecological News, 12, 217–218.Google Scholar
  9. Becquet, C., Patterson, N., Stone, A. C., Przeworski, M., & Reich, D. (2007). Genetic structure of chimpanzee populations. Public Library of Science Genetics, 3, e66.PubMedGoogle Scholar
  10. Beibl, J., D'Ettorre, P., & Heinze, J. (2007). Cuticular profiles and mating preference in a slave-making ant. Insectes Sociaux, 54, 174–182.CrossRefGoogle Scholar
  11. Bensasson, D., Zhang, D.-X., Hartl, D. L., & Hewitt, G. M. (2001). Mitochondrial pseudogenes: evolution’s misplaced witnesses. Trends in Ecology & Evolution, 16, 314–321.CrossRefGoogle Scholar
  12. Buschinger, A. (2009). Social parasitism among ants: a review (Hymenoptera: Formicidae). Myrmecological News, 12, 219–235.Google Scholar
  13. Callen, D. F., Thompson, A. D., Shen, Y., Phillips, H. A., Richards, R. I., Mulley, J. C., et al. (1993). Incidence and origin of “null” alleles in the (AC)n microsatellite markers. American Journal of Human Genetics, 52, 922–927.PubMedGoogle Scholar
  14. Carlin, N. F., & Hölldobler, B. (1983). Nestmate and kin recognition in interspecific mixed colonies of ants. Science, 222, 1027–1029.PubMedCrossRefGoogle Scholar
  15. Ciborowski, K. L., Consuegra, S., de Leaniz, C. G., Beaumont, M. A., Wang, J., & Jordan, W. C. (2007). Rare and fleeting: an example of interspecific recombination in animal mitochondrial DNA. Biology Letters, 3, 554–557.PubMedCrossRefGoogle Scholar
  16. Costedoat, C., Pech, N., Salducci, M.-D., Chappaz, R., & Gilles, A. (2005). Evolution of mosaic hybrid zone between invasive and endemic species of Cyprinidae through space and time. Biological Journal of the Linnean Society, 85, 135–155.CrossRefGoogle Scholar
  17. Coyne, J. A., & Orr, H. A. (2004). Speciation. Sunderland: Sinauer.Google Scholar
  18. Crozier, R. H., & Pamilo, P. (1996). Evolution of social insect colonies. Sex allocation and kin selection. Oxford: Oxford University Press.Google Scholar
  19. Czechowski, W. (2001). Mixed colony of Formica pratensis Retz. + Formica cinerea Mayr + Formica sanguinea Latr. (Hymenoptera: Formicidae) and its presumed origin. Annales Zoologici (Warszawa), 51, 205–209.Google Scholar
  20. Dasmahapatra, K. K., Silva-Vasquez, A., Chung, J. W., & Mallet, J. (2007). Genetic analysis of a wild-caught hybrid between non-sister Heliconius butterfly species. Biology Letters, 3, 660–663.PubMedCrossRefGoogle Scholar
  21. Ehrich, D. (2006). AFLPdat: a collection of R functions for convenient handling of AFLP data. Molecular Ecology Notes, 6, 603–604.CrossRefGoogle Scholar
  22. Emery, C. (1908). Beiträge zur Monographie der Formiciden des paläarktischen Faunengebietes. (Hym.) Teil III. Deutsche Entomologische Zeitschrift, 1908, 437–465.Google Scholar
  23. Errard, C. (1984). Evolution, en fonction de l’âge, des relations sociales dans les colonies mixtes hétérospécifiques chez les fourmis des genres Camponotus et Pseudomyrmex. Insectes Sociaux, 31, 185–198.CrossRefGoogle Scholar
  24. Feldhaar, H., Foitzik, S., & Heinze, J. (2008). Lifelong commitment to the wrong partner: hybridization in ants. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 2891–2899.CrossRefGoogle Scholar
  25. Felsenstein, J. (1985). Confidence-limits on phylogenies—an approach using the bootstrap. Evolution, 39, 783–791.CrossRefGoogle Scholar
  26. Folmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhook, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294–299.PubMedGoogle Scholar
  27. Funk, D. J., Nosil, P., & Etges, W. J. (2006). Ecological divergence exhibits consistently positive associations with reproductive isolation across disparate taxa. Proceedings of the National Academy of Sciences of the United States of America, 103, 3209–3213.PubMedCrossRefGoogle Scholar
  28. Gaubert, P., Taylor, P. J., Fernandes, C. A., Bruford, M. W., & Veron, G. (2005). Patterns of cryptic hybridization revealed using an integrative approach: a case study on genets (Carnivora, Viverridae, Genetta spp.) from the southern African subregion. Biological Journal of the Linnean Society, 86, 11–33.CrossRefGoogle Scholar
  29. Gavrilets, S., & Losos, J. B. (2009). Adaptive radiation: contrasting theory with data. Science, 323, 732–737.PubMedCrossRefGoogle Scholar
  30. Gompert, Z., Fordyce, J. A., Forister, M. L., Shapiro, A. M., & Nice, C. C. (2006). Homoploid hybrid speciation in an extreme habitat. Science, 314, 1923–1925.PubMedCrossRefGoogle Scholar
  31. Goodman, S. J., Barton, N. H., Swanson, G., Abernethy, K., & Pemberton, J. M. (1999). Introgression through rare hybridization: a genetic study of a hybrid zone between red and sika deer (genus Cervus) in Argyll, Scotland. Genetics, 152, 355–371.PubMedGoogle Scholar
  32. Grant, P. R., & Grant, B. R. (1994). Phenotypic and genetic effects of hybridization in Darwin’s finches. Evolution, 48, 297–316.CrossRefGoogle Scholar
  33. Grasso, D. A., Mori, A., Bottini, B., & Le Moli, F. (2002). Colony founding in the harvesting ant Messor minor (Hymenoptera, Formicidae). Insect Social Life, 4, 17–22.Google Scholar
  34. Grasso, D. A., Mori, A., Giovannotti, M., & Le Moli, F. (2004). Interspecific interference behaviours by workers of the harvesting ant Messor capitatus (Hymenoptera, Formicidae). Ethology Ecology & Evolution, 16, 197–207.CrossRefGoogle Scholar
  35. Grasso, D. A., Mori, A., & Le Moli, F. (1999). Recruitment and trail communication in two species of Messor ants (Hymenoptera, Formicidae). Italian Journal of Zoology, 66, 373–378.CrossRefGoogle Scholar
  36. Grasso, D. A., Mori, A., & Le Moli, F. (2004b). Competizione intra- ed interspecifica tra colonie incipienti di formiche mietitrici del genere Messor (Hymenoptera, Formicidae). XIX Congresso Nazionale Italiano di Entomologia, pp. 301–304.Google Scholar
  37. Harkness, R. W., & Isham, V. (1988). Relations between nests of Messor wasmanni in Greece. Insectes Sociaux, 35, 1–18.CrossRefGoogle Scholar
  38. Helms Cahan, S., & Keller, L. (2003). Complex hybrid origin of genetic caste determination in harvester ants. Nature, 424, 306–309.PubMedCrossRefGoogle Scholar
  39. Höfener, C., Seifert, B., & Krüger, T. (1996). A genetic model for disruptive selection on colony social organisation, reproduction, and ecotype distribution in wood ants inhabiting different woodland habitats. Insectes Sociaux, 43, 359–373.CrossRefGoogle Scholar
  40. Hölldobler, B., & Markl, H. (1990). Notes on interspecific, mixed colonies in the harvester ant genus Pogonomyrmex. Psyche, 96, 237–238.CrossRefGoogle Scholar
  41. Hopper, K. R. (1999). Risk-spreading and bet-hedging in insect population biology. Annual Review of Entomology, 44, 535–560.PubMedCrossRefGoogle Scholar
  42. ICZN = International Commission on Zoological Nomenclature. (1999). International Code of Zoological Nomenclature (4th ed.). London: International Trust for Zoological Nomenclature.Google Scholar
  43. Isingrini, M., Lenoir, A., & Jaisson, P. (1985). Preimaginal learning as a basis of colony-brood recognition in the ant Cataglyphis cursor. Proceedings of the National Academy of Sciences of the United States of America, 82, 8545–8547.PubMedCrossRefGoogle Scholar
  44. Koide, Y., Ikenaga, M., Sawamura, N., Nishimoto, D., Matsubara, K., Onishi, K., et al. (2008). The evolution of sex-independent transmission ratio distortion involving multiple allelic interactions at a single locus in rice. Genetics, 180, 409–420.PubMedCrossRefGoogle Scholar
  45. Krausse, A. H. (1910). Über Stridulationstöne bei Ameisen. Zoologischer Anzeiger, 35, 523–526.Google Scholar
  46. Krausse, A. H. (1911). Über Messor structor Ltr. und einige andere Ameisen auf Sardinien. Bullettino della Società Entomologica Italiana, 41, 14–18.Google Scholar
  47. Kulmuni, J., Seifert, B., & Pamilo, P. (2010). Segregation distortion causes large-scale differences between male and female genomes in hybrid ants. Proceedings of the National Academy of Sciences of the United States of America, 107, 7371–7376.PubMedCrossRefGoogle Scholar
  48. Kumar, S., Tamura, K., Jacobsen, I. B., & Nei, M. (2001). MEGA2: molecular evolutionary genetics analysis software. Bioinformatics, 17, 1244–1245.PubMedCrossRefGoogle Scholar
  49. Latreille, P. A. (1798). Essai sur l’histoire des fourmis de la France. Brive: F. Bourdeaux.Google Scholar
  50. MacArthur, R. H., & Wilson, E. O. (1967). The theory of island biogeograpy. Princeton: Princeton University Press.Google Scholar
  51. Mallet, J. (2005). Hybridization as an invasion of the genome. Trends in Ecology & Evolution, 20, 229–237.CrossRefGoogle Scholar
  52. Mallet, J. (2007). Hybrid speciation. Nature, 446, 279–283.PubMedCrossRefGoogle Scholar
  53. Maruyama, M., Steiner, F. M., Stauffer, C., Akino, T., Crozier, R. H., & Schlick-Steiner, B. C. (2008). A DNA and morphology based phylogenetic framework of the ant genus Lasius with hypotheses for the evolution of social parasitism and fungiculture. BioMed Central Evolutionary Biology, 8, 237.PubMedGoogle Scholar
  54. McDevitt, A. D., Edwards, C. J., O’Toole, P., O'Sullivan, P., O'Reilly, C., & Carden, R. F. (2009). Genetic structure of, and hybridisation between, red (Cervus elaphus) and sika (Cervus nippon) deer in Ireland. Mammalian Biology, 74, 263–273.CrossRefGoogle Scholar
  55. McMeniman, C. J., & Barker, S. C. (2005). Transmission ratio distortion in the human body louse, Pediculus humanus (Insecta: Phthiraptera). Heredity, 96, 63–68.Google Scholar
  56. Miller, C. R., Joyce, P., & Waits, L. P. (2002). Assessing allelic dropout and genotype reliability using maximum likelihood. Genetics, 160, 357–366.PubMedGoogle Scholar
  57. Mori, A., & Le Moli, F. (1998). Mating behaviour and colony founding of the slave-making ant Formica sanguinea. Journal of Insect Behavior, 11, 235–245.CrossRefGoogle Scholar
  58. Nordborg, M., Hu, T. T., Ishino, Y., Jhaveri, J., Toomajian, C., Zheng, H., et al. (2005). The pattern of polymorphism in Arabidopsis thaliana. Public Library of Science Biology, 3, e196.Google Scholar
  59. Pattengale, N. D., Alipour, M., Bininda-Emonds, O. R. P., Moret, B. M. E., & Stamatakis, A. (2010). How many bootstrap replicates are necessary? Journal of Computational Biology, 17, 337–354.PubMedCrossRefGoogle Scholar
  60. Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945–959.PubMedGoogle Scholar
  61. Pritchard, J. K., Wen, X., & Falush, D. (2010). Documentation for structure software: version 2.3. Accessed 29 September 2010.
  62. Pusch, K., Heinze, J., & Foitzik, S. (2006). The influence of hybridization on colony structure in the ant species Temnothorax nylanderi and T. crassispinus. Insectes Sociaux, 53, 439–445.CrossRefGoogle Scholar
  63. Pusch, K., Meindl, C., & Heinze, J. (2006). Heterospecific colony fusion in two Temnothorax (Hymenoptera: Formicidae) sibling ants. Myrmecologische Nachrichten, 9, 43–46.Google Scholar
  64. Pusch, K., Seifert, B., Foitzik, S., & Heinze, J. (2006). Distribution and genetic divergence of two parapatric sibling ant species in Central Europe. Biological Journal of the Linnean Society, 88, 223–234.CrossRefGoogle Scholar
  65. Randi, E. (2008). Detecting hybridization between wild species and their domesticated relatives. Molecular Ecology, 17, 285–293.PubMedCrossRefGoogle Scholar
  66. Rissing, S. W., & Pollock, G. B. (1991). An experimental analysis of pleometrotic advantage in the desert seed-harvester ant Messor pergandei (Hymenoptera; Formicidae). Insectes Sociaux, 38, 205–211.CrossRefGoogle Scholar
  67. Ross, K. G., & Trager, J. C. (1990). Systematics and population genetics of fire ants (Solenopsis saevissima complex) from Argentina. Evolution, 44, 2113–2134.CrossRefGoogle Scholar
  68. Santschi, F. (1927). Revision des Messor du groupe instabilis Sm. (Hymenopt.). Boletín de la Real Sociedad española de Historia natural (Madrid), 27, 225–250.Google Scholar
  69. Schlick-Steiner, B. C., Steiner, F. M., Konrad, H., Markó, B., Csősz, S., Heller, G., et al. (2006). More than one species of Messor harvester ants (Hymenoptera: Formicidae) in Central Europe. European Journal of Entomology, 103, 469–476.Google Scholar
  70. Schlick-Steiner, B. C., Steiner, F. M., Konrad, H., Seifert, B., Christian, E., Moder, K., et al. (2008). Specificity and transmission mosaic of ant nest-wall fungi. Proceedings of the National Academy of Sciences of the United States of America, 105, 941–944.CrossRefGoogle Scholar
  71. Schlick-Steiner, B. C., Steiner, F. M., Seifert, B., Stauffer, C., Christian, E., & Crozier, R. H. (2010). Integrative taxonomy: a multi-source approach to exploring biodiversity. Annual Review of Entomology, 55, 421–438.PubMedCrossRefGoogle Scholar
  72. Schmidt, B. C., & Sperling, F. A. H. (2008). Widespread decoupling of mtDNA variation and species integrity in Grammia tiger moths (Lepidoptera: Noctuidae). Systematic Entomology, 33, 613–634.CrossRefGoogle Scholar
  73. Schwarz, D., Matta, B. M., Shakir-Botteri, N. L., & McPheron, B. A. (2005). Host shift to an invasive plant triggers rapid animal hybrid speciation. Nature, 436, 546–549.PubMedCrossRefGoogle Scholar
  74. Seifert, B. (1999). Interspecific hybridisations in natural populations of ants by example of a regional fauna (Hymenoptera, Formicidae). Insectes Sociaux, 46, 45–52.CrossRefGoogle Scholar
  75. Seifert, B. (2000). Rapid range expansion in Lasius neglectus (Hymenoptera, Formicidae)—an Asian invader swamps Europe. Deutsche Entomologische Zeitschrift, 47, 173–179.Google Scholar
  76. Seifert, B. (2006). Social cleptogamy in the ant subgenus Chthonolasius Ruzsky, 1912—survival as a minority. Abhandlungen und Berichte des Naturkundemuseums Görlitz, 77, 251–276.Google Scholar
  77. Seifert, B. (2008). Removal of allometric variance improves species separation in multi-character discriminant functions when species are strongly allometric and exposes diagnostic characters. Myrmecological News, 11, 91–105.Google Scholar
  78. Seifert, B. (2009). Cryptic species in ants (Hymenoptera: Formicidae) revisited: we need a change in the alpha-taxonomic approach. Myrmecological News, 12, 149–166.Google Scholar
  79. Seifert, B., & Goropashnaya, A. V. (2004). Ideal phenotypes and mismatching haplotypes—errors of mtDNA treeing in ants (Hymenoptera: Formicidae) detected by standardized morphometry. Organisms Diversity & Evolution, 4, 295–305.CrossRefGoogle Scholar
  80. Seifert, B., Kulmuni, J., & Pamilo, P. (2010). Independent hybrid populations of Formica polyctena X rufa wood ants (Hymenoptera: Formicidae) abound under conditions of forest fragmentation. Evolutionary Ecology, 24, 1219–1237.CrossRefGoogle Scholar
  81. Senn, H. V., & Pemberton, J. M. (2009). Variable extent of hybridization between invasive sika (Cervus nippon) and native red deer (C. elaphus) in a small geographical area. Molecular Ecology, 18, 862–876.PubMedCrossRefGoogle Scholar
  82. Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., & Flook, P. (1994). Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America, 87, 651–701.Google Scholar
  83. Solida, L., Grasso, D. A., Celant, A., Fanfani, A., Mori, A., & Le Moli, F. (2007). Foraging activity in two species of Messor harvester ants: preliminary data on size-matching and diet breadth. Redia, 90, 71–73.Google Scholar
  84. Solida, L., Scalisi, M., Fanfani, A., Mori, A., & Grasso, D. A. (2010). Interspecific space partitioning during the foraging activity of two syntopic species of Messor harvester ants. Journal of Biological Research, 13, 3–12.Google Scholar
  85. Soltis, P. S., & Soltis, D. E. (2003). Applying the bootstrap in phylogeny reconstruction. Statistical Science, 18, 256–267.CrossRefGoogle Scholar
  86. Stamatakis, A., Hoover, P., & Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology, 57, 758–771.PubMedCrossRefGoogle Scholar
  87. Steiner, F. M., Crozier, R. H., & Schlick-Steiner, B. C. (2009) (“2010”). Colony structure. In L. Lach, C. Parr, & K. Abbott (Eds.), Ant ecology (pp. 177–193). Oxford: Oxford University Press.Google Scholar
  88. Steiner, F. M., Schlick-Steiner, B. C., Schödl, S., Espadaler, X., Seifert, B., Christian, E., et al. (2004). Phylogeny and bionomics of Lasius austriacus (Hymenoptera, Formicidae). Insectes Sociaux, 51, 24–29.CrossRefGoogle Scholar
  89. Steiner, F. M., Seifert, B., Moder, K., & Schlick-Steiner, B. C. (2010). A multisource solution for a complex problem in biodiversity research: Description of the cryptic ant species Tetramorium alpestre sp.n. (Hymenoptera: Formicidae). Zoologischer Anzeiger, 249, 223–254.CrossRefGoogle Scholar
  90. Swofford, D. L. (1998). PAUP*: Phylogenetic Analysis Using Parsimony (*and other methods). Version 4.0b3. Sunderland: Sinauer.Google Scholar
  91. Tamura, K., & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10, 512–526.PubMedGoogle Scholar
  92. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876–4882.PubMedCrossRefGoogle Scholar
  93. Turelli, M., Barton, N. H., & Coyne, J. A. (2001). Theory and speciation. Trends in Ecology & Evolution, 16, 330–343.CrossRefGoogle Scholar
  94. Umphrey, G. J. (2006). Sperm parasitism in ants: Selection for interspecific mating and hybridization. Ecology, 87, 2148–2159.PubMedCrossRefGoogle Scholar
  95. Van der Have, T. M., Pedersen, J. S., & Boomsma, J. J. (2011). Mating, hybridisation and introgression in Lasius ants (Hymenoptera: Formicidae). Myrmecological News, 15, 109–115.Google Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2011

Authors and Affiliations

  • Florian M. Steiner
    • 1
  • Bernhard Seifert
    • 2
  • Donato A. Grasso
    • 3
  • Francesco Le Moli
    • 3
  • Wolfgang Arthofer
    • 1
  • Christian Stauffer
    • 4
  • Ross H. Crozier
    • 5
  • Birgit C. Schlick-Steiner
    • 1
    Email author
  1. 1.Molecular Ecology Group, Institute of EcologyUniversity of InnsbruckInnsbruckAustria
  2. 2.Senckenberg Museum of Natural HistoryGörlitzGermany
  3. 3.Department of Evolutionary and Functional BiologyUniversity of ParmaParmaItaly
  4. 4.Institute of Forest Entomology, Forest Pathology and Forest ProtectionBoku, University of Natural Resources and Life SciencesViennaAustria
  5. 5.School of Marine and Tropical BiologyJames Cook UniversityTownsvilleAustralia

Personalised recommendations