Skip to main content

Advertisement

Log in

Role of microRNA-363 during tumor progression and invasion

  • Review
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Recent progresses in diagnostic and therapeutic methods have significantly improved prognosis in cancer patients. However, cancer is still considered as one of the main causes of human deaths in the world. Late diagnosis in advanced tumor stages can reduce the effectiveness of treatment methods and increase mortality rate of cancer patients. Therefore, investigating the molecular mechanisms of tumor progression can help to introduce the early diagnostic markers in these patients. MicroRNA (miRNAs) has an important role in regulation of pathophysiological cellular processes. Due to their high stability in body fluids, they are always used as the non-invasive markers in cancer patients. Since, miR-363 deregulation has been reported in a wide range of cancers, we discussed the role of miR-363 during tumor progression and metastasis. It has been reported that miR-363 has mainly a tumor suppressor function through the regulation of transcription factors, apoptosis, cell cycle, and structural proteins. MiR-363 also affected the tumor progression via regulation of various signaling pathways such as WNT, MAPK, TGF-β, NOTCH, and PI3K/AKT. Therefore, miR-363 can be introduced as a probable therapeutic target as well as a non-invasive diagnostic marker in cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

Code availability

Not applicable.

References

  1. Adan-Gokbulut A, Kartal-Yandim M, Iskender G, Baran Y (2013) Novel agents targeting bioactive sphingolipids for the treatment of cancer. Curr Med Chem 20(1):108–122

    Article  CAS  PubMed  Google Scholar 

  2. Akhlaghipour I, Fanoodi A, Zangouei AS, Taghehchian N, Khalili-Tanha G, Moghbeli M (2023) MicroRNAs as the critical regulators of Forkhead box protein family in pancreatic, thyroid, and liver cancers. Biochem Genet. https://doi.org/10.1007/s10528-023-10346-4

    Article  PubMed  Google Scholar 

  3. Akhlaghipour I, Taghehchian N, Zangouei AS, Maharati A, Mahmoudian RA, Saburi E, Moghbeli M (2023) MicroRNA-377: A therapeutic and diagnostic tumor marker. Int J Biol Macromol 226:1226–1235. https://doi.org/10.1016/j.ijbiomac.2022.11.236

    Article  CAS  PubMed  Google Scholar 

  4. An J, Wang X, Guo P, Zhong Y, Zhang X, Yu Z (2014) Hexabromocyclododecane and polychlorinated biphenyls increase resistance of hepatocellular carcinoma cells to cisplatin through the phosphatidylinositol 3-kinase/protein kinase B pathway. Toxicol Lett 229(1):265–272. https://doi.org/10.1016/j.toxlet.2014.06.025

    Article  CAS  PubMed  Google Scholar 

  5. Aylon Y, Ofir-Rosenfeld Y, Yabuta N, Lapi E, Nojima H, Lu X, Oren M (2010) The Lats2 tumor suppressor augments p53-mediated apoptosis by promoting the nuclear proapoptotic function of ASPP1. Genes Dev 24(21):2420–2429. https://doi.org/10.1101/gad.1954410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Baker SJ, Reddy EP (2012) CDK4: a key player in the cell cycle, development, and cancer. Genes Cancer 3(11–12):658–669. https://doi.org/10.1177/1947601913478972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Balon K, Sheriff A, Jackow J, Laczmanski L (2022) Targeting cancer with CRISPR/Cas9-based therapy. Int J Mol Sci 23(1):573. https://doi.org/10.3390/ijms23010573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bellissimo DC, Speck NA (2017) RUNX1 mutations in inherited and sporadic leukemia. Front Cell Dev Biol 5:111. https://doi.org/10.3389/fcell.2017.00111

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bhagat M, Palanichamy JK, Ramalingam P, Mudassir M, Irshad K, Chosdol K, Sarkar C, Seth P, Goswami S, Sinha S, Chattopadhyay P (2016) HIF-2α mediates a marked increase in migration and stemness characteristics in a subset of glioma cells under hypoxia by activating an Oct-4/Sox-2-Mena (INV) axis. Int J Biochem Cell Biol 74:60–71. https://doi.org/10.1016/j.biocel.2016.02.017

    Article  CAS  PubMed  Google Scholar 

  10. Bi Y, Mao Y, Su Z, Du J, Ye L, Xu F (2021) Long noncoding RNA HNF1A-AS1 regulates proliferation and apoptosis of glioma through activation of the JNK signaling pathway via miR-363-3p/MAP2K4. J Cell Physiol 236(2):1068–1082. https://doi.org/10.1002/jcp.29916

    Article  CAS  PubMed  Google Scholar 

  11. Boufraqech M, Zhang L, Nilubol N, Sadowski SM, Kotian S, Quezado M, Kebebew E (2016) Lysyl Oxidase (LOX) transcriptionally regulates SNAI2 expression and TIMP4 secretion in human cancers. Clin Cancer Res 22(17):4491–4504. https://doi.org/10.1158/1078-0432.Ccr-15-2461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cao L, Wan Q, Li F, Tang CE (2018) MiR-363 inhibits cisplatin chemoresistance of epithelial ovarian cancer by regulating snail-induced epithelial-mesenchymal transition. BMB Rep 51(9):456–461. https://doi.org/10.5483/BMBRep.2018.51.9.104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cao W, Chen HD, Yu YW, Li N, Chen WQ (2021) Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020. Chin Med J (Engl) 134(7):783–791. https://doi.org/10.1097/CM9.0000000000001474

    Article  PubMed  Google Scholar 

  14. Carter CL, Allen C, Henson DE (1989) Relation of tumor size, lymph node status, and survival in 24,740 breast cancer cases. Cancer 63(1):181–187. https://doi.org/10.1002/1097-0142(19890101)63:1%3c181::aid-cncr2820630129%3e3.0.co;2-h

    Article  CAS  PubMed  Google Scholar 

  15. Cham KL, Soga T, Parhar IS (2017) RING finger protein 38 is a neuronal protein in the brain of Nile tilapia, Oreochromis niloticus. Front Neuroanat 11:72. https://doi.org/10.3389/fnana.2017.00072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chang MS, Huang CJ, Chen ML, Chen ST, Fan CC, Chu JM, Lin WC, Yang YC (2001) Cloning and characterization of hMAP126, a new member of mitotic spindle-associated proteins. Biochem Biophys Res Commun 287(1):116–121. https://doi.org/10.1006/bbrc.2001.5554

    Article  CAS  PubMed  Google Scholar 

  17. Chen L, Bourguignon LY (2014) Hyaluronan-CD44 interaction promotes c-Jun signaling and miRNA21 expression leading to Bcl-2 expression and chemoresistance in breast cancer cells. Mol Cancer 13:52. https://doi.org/10.1186/1476-4598-13-52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen G, Sun W, Hua X, Zeng W, Yang L (2018) Long non-coding RNA FOXD2-AS1 aggravates nasopharyngeal carcinoma carcinogenesis by modulating miR-363-5p/S100A1 pathway. Gene 645:76–84. https://doi.org/10.1016/j.gene.2017.12.026

    Article  CAS  PubMed  Google Scholar 

  19. Chen J, Wang Z, Shen X, Cui X, Guo Y (2019) Identification of novel biomarkers and small molecule drugs in human colorectal cancer by microarray and bioinformatics analysis. Mol Genet Genomic Med 7(7):e00713. https://doi.org/10.1002/mgg3.713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen Y, Chen S, Lu J, Yuan D, He L, Qin P, Tan H, Xu L (2021) MicroRNA-363-3p promote the development of acute myeloid leukemia with RUNX1 mutation by targeting SPRYD4 and FNDC3B. Medicine (Baltimore) 100(18):e25807. https://doi.org/10.1097/md.0000000000025807

    Article  CAS  PubMed  Google Scholar 

  21. Cheng TS, Hsiao YL, Lin CC, Yu CT, Hsu CM, Chang MS, Lee CI, Huang CY, Howng SL, Hong YR (2008) Glycogen synthase kinase 3beta interacts with and phosphorylates the spindle-associated protein astrin. J Biol Chem 283(4):2454–2464. https://doi.org/10.1074/jbc.M706794200

    Article  CAS  PubMed  Google Scholar 

  22. Cheng GZ, Zhang W, Wang LH (2008) Regulation of cancer cell survival, migration, and invasion by Twist: AKT2 comes to interplay. Cancer Res 68(4):957–960. https://doi.org/10.1158/0008-5472.Can-07-5067

    Article  CAS  PubMed  Google Scholar 

  23. Chi H (2011) Sphingosine-1-phosphate and immune regulation: trafficking and beyond. Trends Pharmacol Sci 32(1):16–24. https://doi.org/10.1016/j.tips.2010.11.002

    Article  CAS  PubMed  Google Scholar 

  24. Chiorean EG, Coveler AL (2015) Pancreatic cancer: optimizing treatment options, new, and emerging targeted therapies. Drug Des Devel Ther 9:3529–3545. https://doi.org/10.2147/DDDT.S60328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR (2010) The BCL-2 family reunion. Mol Cell 37(3):299–310. https://doi.org/10.1016/j.molcel.2010.01.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chiu SC, Chen JM, Wei TY, Cheng TS, Wang YH, Ku CF, Lian CH, Liu CC, Kuo YC, Yu CT (2014) The mitosis-regulating and protein-protein interaction activities of astrin are controlled by aurora-A-induced phosphorylation. Am J Physiol Cell Physiol 307(5):C466-478. https://doi.org/10.1152/ajpcell.00164.2014

    Article  CAS  PubMed  Google Scholar 

  27. Chiu LY, Hsin IL, Yang TY, Sung WW, Chi JY, Chang JT, Ko JL, Sheu GT (2017) The ERK-ZEB1 pathway mediates epithelial-mesenchymal transition in pemetrexed resistant lung cancer cells with suppression by vinca alkaloids. Oncogene 36(2):242–253. https://doi.org/10.1038/onc.2016.195

    Article  CAS  PubMed  Google Scholar 

  28. Chung HJ, Park JE, Lee NS, Kim H, Jang CY (2016) Phosphorylation of Astrin regulates its kinetochore function. J Biol Chem 291(34):17579–17592. https://doi.org/10.1074/jbc.M115.712745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Croucher DR, Hochgräfe F, Zhang L, Liu L, Lyons RJ, Rickwood D, Tactacan CM, Browne BC, Ali N, Chan H, Shearer R, Gallego-Ortega D, Saunders DN, Swarbrick A, Daly RJ (2013) Involvement of Lyn and the atypical kinase SgK269/PEAK1 in a basal breast cancer signaling pathway. Cancer Res 73(6):1969–1980. https://doi.org/10.1158/0008-5472.can-12-1472

    Article  CAS  PubMed  Google Scholar 

  30. Cui D, Zhao Y, Xu J (2019) Activation of CXCL5-CXCR2 axis promotes proliferation and accelerates G1 to S phase transition of papillary thyroid carcinoma cells and activates JNK and p38 pathways. Cancer Biol Ther 20(5):608–616. https://doi.org/10.1080/15384047.2018.1539289

    Article  CAS  PubMed  Google Scholar 

  31. Dai X, She P, Chi F, Feng Y, Liu H, Jin D, Zhao Y, Guo X, Jiang D, Guan KL, Zhong TP, Zhao B (2013) Phosphorylation of angiomotin by Lats1/2 kinases inhibits F-actin binding, cell migration, and angiogenesis. J Biol Chem 288(47):34041–34051. https://doi.org/10.1074/jbc.M113.518019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Danial NN (2007) BCL-2 family proteins: critical checkpoints of apoptotic cell death. Clin Cancer Res 13(24):7254–7263. https://doi.org/10.1158/1078-0432.Ccr-07-1598

    Article  CAS  PubMed  Google Scholar 

  33. Das K, Leong DT, Gupta A, Shen L, Putti T, Stein GS, van Wijnen AJ, Salto-Tellez M (2009) Positive association between nuclear Runx2 and oestrogen-progesterone receptor gene expression characterises a biological subtype of breast cancer. Eur J Cancer 45(13):2239–2248. https://doi.org/10.1016/j.ejca.2009.06.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. De Craene B, Berx G (2013) Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer 13(2):97–110. https://doi.org/10.1038/nrc3447

    Article  CAS  PubMed  Google Scholar 

  35. DeRycke MS, Andersen JD, Harrington KM, Pambuccian SE, Kalloger SE, Boylan KL, Argenta PA, Skubitz AP (2009) S100A1 expression in ovarian and endometrial endometrioid carcinomas is a prognostic indicator of relapse-free survival. Am J Clin Pathol 132(6):846–856. https://doi.org/10.1309/ajcptk87emmikpfs

    Article  CAS  PubMed  Google Scholar 

  36. Ding C, Tang W, Fan X, Wang X, Wu H, Xu H, Xu W, Gao W, Wu G (2018) Overexpression of PEAK1 contributes to epithelial-mesenchymal transition and tumor metastasis in lung cancer through modulating ERK1/2 and JAK2 signaling. Cell Death Dis 9(8):802. https://doi.org/10.1038/s41419-018-0817-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dong J, Geng J, Tan W (2018) MiR-363-3p suppresses tumor growth and metastasis of colorectal cancer via targeting SphK2. Biomed Pharmacother 105:922–931. https://doi.org/10.1016/j.biopha.2018.06.052

    Article  CAS  PubMed  Google Scholar 

  38. Dong S, Xue S, Sun Y, Han Z, Sun L, Xu J, Liu J (2021) MicroRNA-363-3p downregulation in papillary thyroid cancer inhibits tumor progression by targeting NOB1. J Investig Med 69(1):66–74. https://doi.org/10.1136/jim-2020-001562

    Article  PubMed  Google Scholar 

  39. Donnem T, Al-Saad S, Al-Shibli K, Busund LT, Bremnes RM (2010) Co-expression of PDGF-B and VEGFR-3 strongly correlates with lymph node metastasis and poor survival in non-small-cell lung cancer. Ann Oncol 21(2):223–231. https://doi.org/10.1093/annonc/mdp296

    Article  CAS  PubMed  Google Scholar 

  40. Duchartre Y, Kim YM, Kahn M (2016) The Wnt signaling pathway in cancer. Crit Rev Oncol Hematol 99:141–149. https://doi.org/10.1016/j.critrevonc.2015.12.005

    Article  PubMed  Google Scholar 

  41. Fan B, Su B, Song G, Liu X, Yan Z, Wang S, Hu F, Yang J (2021) miR-363-3p induces EMT via the Wnt/β-catenin pathway in glioma cells by targeting CELF2. J Cell Mol Med 25(22):10418–10429. https://doi.org/10.1111/jcmm.16970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fatica A, Oeffinger M, Dlakić M, Tollervey D (2003) Nob1p is required for cleavage of the 3’ end of 18S rRNA. Mol Cell Biol 23(5):1798–1807. https://doi.org/10.1128/mcb.23.5.1798-1807.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Feng WT, Yao R, Xu LJ, Zhong XM, Liu H, Sun Y, Zhou LL (2018) Effect of miR-363 on the proliferation, invasion and apoptosis of laryngeal cancer by targeting Mcl-1. Eur Rev Med Pharmacol Sci 22(14):4564–4572. https://doi.org/10.26355/eurrev_201807_15512

    Article  PubMed  Google Scholar 

  44. Feng X, Zhang D, Li X, Ma S, Zhang C, Wang J, Li Y, Liang L, Zhang P, Qu Y, Zhang Z, Yang Z, Xiang Y, Zhang W, Wang S, Shao W, Wang W (2018) CXCL5, the upregulated chemokine in patients with uterine cervix cancer, in vivo and in vitro contributes to oncogenic potential of Hela uterine cervix cancer cells. Biomed Pharmacother 107:1496–1504. https://doi.org/10.1016/j.biopha.2018.08.149

    Article  CAS  PubMed  Google Scholar 

  45. Gary R, Ludwig DL, Cornelius HL, MacInnes MA, Park MS (1997) The DNA repair endonuclease XPG binds to proliferating cell nuclear antigen (PCNA) and shares sequence elements with the PCNA-binding regions of FEN-1 and cyclin-dependent kinase inhibitor p21. J Biol Chem 272(39):24522–24529. https://doi.org/10.1074/jbc.272.39.24522

    Article  CAS  PubMed  Google Scholar 

  46. Geng Q, Li Z, Li X, Wu Y, Chen N (2021) LncRNA NORAD, sponging miR-363-3p, promotes invasion and EMT by upregulating PEAK1 and activating the ERK signaling pathway in NSCLC cells. J Bioenerg Biomembr 53(3):321–332. https://doi.org/10.1007/s10863-021-09892-6

    Article  CAS  PubMed  Google Scholar 

  47. Geserick P, Wang J, Feoktistova M, Leverkus M (2014) The ratio of Mcl-1 and Noxa determines ABT737 resistance in squamous cell carcinoma of the skin. Cell Death Dis 5(9):e1412. https://doi.org/10.1038/cddis.2014.379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Glisovic T, Bachorik JL, Yong J, Dreyfuss G (2008) RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett 582(14):1977–1986. https://doi.org/10.1016/j.febslet.2008.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Goh WQ, Ow GS, Kuznetsov VA, Chong S, Lim YP (2015) DLAT subunit of the pyruvate dehydrogenase complex is upregulated in gastric cancer-implications in cancer therapy. Am J Transl Res 7(6):1140–1151

    PubMed  PubMed Central  Google Scholar 

  50. Gowda PS, Wildman BJ, Trotter TN, Xu X, Hao X, Hassan MQ, Yang Y (2018) Runx2 suppression by miR-342 and miR-363 inhibits multiple myeloma progression. Mol Cancer Res 16(7):1138–1148. https://doi.org/10.1158/1541-7786.Mcr-17-0606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Group AS, Kimman M, Jan S, Yip CH, Thabrany H, Peters SA, Bhoo-Pathy N, Woodward M (2015) Catastrophic health expenditure and 12-month mortality associated with cancer in Southeast Asia: results from a longitudinal study in eight countries. BMC Med 13:190. https://doi.org/10.1186/s12916-015-0433-1

    Article  Google Scholar 

  52. Gruber J, Harborth J, Schnabel J, Weber K, Hatzfeld M (2002) The mitotic-spindle-associated protein astrin is essential for progression through mitosis. J Cell Sci 115(Pt 21):4053–4059. https://doi.org/10.1242/jcs.00088

    Article  CAS  PubMed  Google Scholar 

  53. Guo Z, Maki M, Ding R, Yang Y, Zhang B, Xiong L (2014) Genome-wide survey of tissue-specific microRNA and transcription factor regulatory networks in 12 tissues. Sci Rep 4:5150. https://doi.org/10.1038/srep05150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Guo Q, Dong L, Zhang C, Liu D, Peng P (2022) MicroRNA-363-3p, negatively regulated by long non-coding RNA small nucleolar RNA host gene 5, inhibits tumor progression by targeting Aurora kinase A in colorectal cancer. Bioengineered 13(3):5357–5372. https://doi.org/10.1080/21655979.2021.2018972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hait NC, Sarkar S, Le Stunff H, Mikami A, Maceyka M, Milstien S, Spiegel S (2005) Role of sphingosine kinase 2 in cell migration toward epidermal growth factor. J Biol Chem 280(33):29462–29469. https://doi.org/10.1074/jbc.M502922200

    Article  CAS  PubMed  Google Scholar 

  56. Hamidi AA, Khalili-Tanha G, Nasrpour Navaei Z, Moghbeli M (2022) Long non-coding RNAs as the critical regulators of epithelial mesenchymal transition in colorectal tumor cells: an overview. Cancer Cell Int 22(1):71. https://doi.org/10.1186/s12935-022-02501-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9(2):139–150. https://doi.org/10.1038/nrm2329

    Article  CAS  PubMed  Google Scholar 

  58. Hao T, Li CX, Ding XY, Xing XJ (2019) MicroRNA-363-3p/p21(Cip1/Waf1) axis is regulated by HIF-2α in mediating stemness of melanoma cells. Neoplasma 66(3):427–436. https://doi.org/10.4149/neo_2018_180828N655

    Article  CAS  PubMed  Google Scholar 

  59. He F, Fang L, Yin Q (2019) miR-363 acts as a tumor suppressor in osteosarcoma cells by inhibiting PDZD2. Oncol Rep 41(5):2729–2738. https://doi.org/10.3892/or.2019.7078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hirata H, Sugimachi K, Takahashi Y, Ueda M, Sakimura S, Uchi R, Kurashige J, Takano Y, Nanbara S, Komatsu H, Saito T, Shinden Y, Iguchi T, Eguchi H, Atsumi K, Sakamoto K, Doi T, Hirakawa M, Honda H, Mimori K (2015) Downregulation of PRRX1 confers cancer stem cell-like properties and predicts poor prognosis in hepatocellular carcinoma. Ann Surg Oncol 22 Suppl 3:S1402-1409. https://doi.org/10.1245/s10434-014-4242-0

    Article  PubMed  Google Scholar 

  61. Honda R, Tanaka H, Yasuda H (1997) Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 420(1):25–27. https://doi.org/10.1016/s0014-5793(97)01480-4

    Article  CAS  PubMed  Google Scholar 

  62. Hu F, Min J, Cao X, Liu L, Ge Z, Hu J, Li X (2016) MiR-363-3p inhibits the epithelial-to-mesenchymal transition and suppresses metastasis in colorectal cancer by targeting Sox4. Biochem Biophys Res Commun 474(1):35–42. https://doi.org/10.1016/j.bbrc.2016.04.055

    Article  CAS  PubMed  Google Scholar 

  63. Hu PA, Miao YY, Yu S, Guo N (2020) Long non-coding RNA SNHG5 promotes human hepatocellular carcinoma progression by regulating miR-363–3p/RNF38 axis. Eur Rev Med Pharmacol Sci 24(7):3592–3604. https://doi.org/10.26355/eurrev_202004_20821

    Article  PubMed  Google Scholar 

  64. Huang H, Chen J, Ding CM, Jin X, Jia ZM, Peng J (2018) LncRNA NR2F1-AS1 regulates hepatocellular carcinoma oxaliplatin resistance by targeting ABCC1 via miR-363. J Cell Mol Med 22(6):3238–3245. https://doi.org/10.1111/jcmm.13605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Huang L, Wen C, Yang X, Lou Q, Wang X, Che J, Chen J, Yang Z, Wu X, Huang M, Lan P, Wang L, Iwamoto A, Wang J, Liu H (2018) PEAK1, acting as a tumor promoter in colorectal cancer, is regulated by the EGFR/KRas signaling axis and miR-181d. Cell Death Dis 9(3):271. https://doi.org/10.1038/s41419-018-0320-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hui Y, Yang Y, Li D, Wang J, Di M, Zhang S, Wang S (2020) LncRNA FEZF1-AS1 modulates cancer stem cell properties of human gastric cancer through miR-363-3p/HMGA2. Cell Transplant 29:963689720925059. https://doi.org/10.1177/0963689720925059

    Article  PubMed  Google Scholar 

  67. Ibusuki M, Yamamoto Y, Shinriki S, Ando Y, Iwase H (2011) Reduced expression of ubiquitin ligase FBXW7 mRNA is associated with poor prognosis in breast cancer patients. Cancer Sci 102(2):439–445. https://doi.org/10.1111/j.1349-7006.2010.01801.x

    Article  CAS  PubMed  Google Scholar 

  68. Inuzuka H, Shaik S, Onoyama I, Gao D, Tseng A, Maser RS, Zhai B, Wan L, Gutierrez A, Lau AW, Xiao Y, Christie AL, Aster J, Settleman J, Gygi SP, Kung AL, Look T, Nakayama KI, DePinho RA, Wei W (2011) SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction. Nature 471(7336):104–109. https://doi.org/10.1038/nature09732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Iwatsuki M, Mimori K, Ishii H, Yokobori T, Takatsuno Y, Sato T, Toh H, Onoyama I, Nakayama KI, Baba H, Mori M (2010) Loss of FBXW7, a cell cycle regulating gene, in colorectal cancer: clinical significance. Int J Cancer 126(8):1828–1837. https://doi.org/10.1002/ijc.24879

    Article  CAS  PubMed  Google Scholar 

  70. Jia X, Hong Q, Lei L, Li D, Li J, Mo M, Wang Y, Shao Z, Shen Z, Cheng J, Liu G (2015) Basal and therapy-driven hypoxia-inducible factor-1α confers resistance to endocrine therapy in estrogen receptor-positive breast cancer. Oncotarget 6(11):8648–8662. https://doi.org/10.18632/oncotarget.3257

    Article  PubMed  PubMed Central  Google Scholar 

  71. Jin L, Chen C, Huang L, Sun Q, Bu L (2022) Long noncoding RNA NR2F1-AS1 stimulates the tumorigenic behavior of non-small cell lung cancer cells by sponging miR-363-3p to increase SOX4. Open Med (Wars) 17(1):87–95. https://doi.org/10.1515/med-2021-0403

    Article  CAS  PubMed  Google Scholar 

  72. Kalra J, Sutherland BW, Stratford AL, Dragowska W, Gelmon KA, Dedhar S, Dunn SE, Bally MB (2010) Suppression of Her2/neu expression through ILK inhibition is regulated by a pathway involving TWIST and YB-1. Oncogene 29(48):6343–6356. https://doi.org/10.1038/onc.2010.366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kang Y, Massagué J (2004) Epithelial-mesenchymal transitions: twist in development and metastasis. Cell 118(3):277–279. https://doi.org/10.1016/j.cell.2004.07.011

    Article  CAS  PubMed  Google Scholar 

  74. Kang MH, Reynolds CP (2009) Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res 15(4):1126–1132. https://doi.org/10.1158/1078-0432.Ccr-08-0144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kania MA, Bonner AS, Duffy JB, Gergen JP (1990) The Drosophila segmentation gene runt encodes a novel nuclear regulatory protein that is also expressed in the developing nervous system. Genes Dev 4(10):1701–1713. https://doi.org/10.1101/gad.4.10.1701

    Article  CAS  PubMed  Google Scholar 

  76. Katoh M, Katoh M (2004) Human FOX gene family (Review). Int J Oncol 25(5):1495–1500

    CAS  PubMed  Google Scholar 

  77. Knuutila S, Aalto Y, Autio K, Björkqvist AM, El-Rifai W, Hemmer S, Huhta T, Kettunen E, Kiuru-Kuhlefelt S, Larramendy ML, Lushnikova T, Monni O, Pere H, Tapper J, Tarkkanen M, Varis A, Wasenius VM, Wolf M, Zhu Y (1999) DNA copy number losses in human neoplasms. Am J Pathol 155(3):683–694. https://doi.org/10.1016/s0002-9440(10)65166-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kurashige J, Watanabe M, Iwatsuki M, Kinoshita K, Saito S, Hiyoshi Y, Kamohara H, Baba Y, Mimori K, Baba H (2012) Overexpression of microRNA-223 regulates the ubiquitin ligase FBXW7 in oesophageal squamous cell carcinoma. Br J Cancer 106(1):182–188. https://doi.org/10.1038/bjc.2011.509

    Article  CAS  PubMed  Google Scholar 

  79. Ladd AN, Charlet N, Cooper TA (2001) The CELF family of RNA binding proteins is implicated in cell-specific and developmentally regulated alternative splicing. Mol Cell Biol 21(4):1285–1296. https://doi.org/10.1128/mcb.21.4.1285-1296.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lambert LK, Balneaves LG, Howard AF, Chia SK, Gotay CC (2018) Understanding adjuvant endocrine therapy persistence in breast Cancer survivors. BMC Cancer 18(1):732. https://doi.org/10.1186/s12885-018-4644-7

    Article  PubMed  PubMed Central  Google Scholar 

  81. Lee JS, Lee H, Lee S, Kang JH, Lee SH, Kim SG, Cho ES, Kim NH, Yook JI, Kim SY (2019) Loss of SLC25A11 causes suppression of NSCLC and melanoma tumor formation. EBioMedicine 40:184–197. https://doi.org/10.1016/j.ebiom.2019.01.036

    Article  PubMed  PubMed Central  Google Scholar 

  82. Letai A, Sorcinelli MD, Beard C, Korsmeyer SJ (2004) Antiapoptotic BCL-2 is required for maintenance of a model leukemia. Cancer Cell 6(3):241–249. https://doi.org/10.1016/j.ccr.2004.07.011

    Article  CAS  PubMed  Google Scholar 

  83. Li G, Barthelemy A, Feng G, Gentil-Perret A, Peoc’h M, Genin C, Tostain J (2007) S100A1: a powerful marker to differentiate chromophobe renal cell carcinoma from renal oncocytoma. Histopathology 50(5):642–647. https://doi.org/10.1111/j.1365-2559.2007.02655.x

    Article  CAS  PubMed  Google Scholar 

  84. Li Y, Wang X, Cheng S, Du J, Deng Z, Zhang Y, Liu Q, Gao J, Cheng B, Ling C (2015) Diosgenin induces G2/M cell cycle arrest and apoptosis in human hepatocellular carcinoma cells. Oncol Rep 33(2):693–698. https://doi.org/10.3892/or.2014.3629

    Article  CAS  PubMed  Google Scholar 

  85. Li Y, Yang J, Wang H, Qiao W, Guo Y, Zhang S, Guo Y (2020) FNDC3B, targeted by miR-125a-5p and miR-217, promotes the proliferation and invasion of colorectal cancer cells via PI3K/mTOR signaling. Onco Targets Ther 13:3501–3510. https://doi.org/10.2147/ott.S226520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Li WZ, Zou Y, Song ZY, Wei ZW, Chen G, Cai QL, Wang Z (2020) Long non-coding RNA SNHG5 affects the invasion and apoptosis of renal cell carcinoma by regulating the miR-363-3p-Twist1 interaction. Am J Transl Res 12(2):697–707

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Li Y, Liu L, Lv Y, Zhang Y, Zhang L, Yu H, Tian W, Zhang Z, Cui S (2021) Silencing long non-coding RNA HNF1A-AS1 inhibits growth and resistance to TAM of breast cancer cells via the microRNA-363/SERTAD3 axis. J Drug Target 29(7):742–753. https://doi.org/10.1080/1061186x.2021.1878362

    Article  CAS  PubMed  Google Scholar 

  88. Lipkowitz S, Weissman AM (2011) RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis. Nat Rev Cancer 11(9):629–643. https://doi.org/10.1038/nrc3120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Liu H, Chakravarty D, Maceyka M, Milstien S, Spiegel S (2002) Sphingosine kinases: A novel family of lipid kinases. In: Progress in Nucleic Acid Research and Molecular Biology, vol 71. Academic Press, pp 493–511. https://doi.org/10.1016/S0079-6603(02)71049-0

  90. Liu B, Chen D, Yang L, Li Y, Ling X, Liu L, Ji W, Wei Y, Wang J, Wei Q, Wang L, Lu J (2010) A functional variant (-1304T>G) in the MKK4 promoter contributes to a decreased risk of lung cancer by increasing the promoter activity. Carcinogenesis 31(8):1405–1411. https://doi.org/10.1093/carcin/bgq126

    Article  CAS  PubMed  Google Scholar 

  91. Liu JY, Zeng QH, Cao PG, Xie D, Yang F, He LY, Dai YB, Li JJ, Liu XM, Zeng HL, Fan XJ, Liu L, Zhu YX, Gong L, Cheng Y, Zhou JD, Hu J, Bo H, Xu ZZ, Cao K (2018) SPAG5 promotes proliferation and suppresses apoptosis in bladder urothelial carcinoma by upregulating Wnt3 via activating the AKT/mTOR pathway and predicts poorer survival. Oncogene 37(29):3937–3952. https://doi.org/10.1038/s41388-018-0223-2

    Article  CAS  PubMed  Google Scholar 

  92. Liu X, Li X, Li J (2021) Long Non-coding RNA FEZF1-AS1 promotes growth and reduces apoptosis through regulation of miR-363-3p/PAX6 Axis in retinoblastoma. Biochem Genet 59(3):637–651. https://doi.org/10.1007/s10528-020-10026-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Long QZ, Du YF, Ding XY, Li X, Song WB, Yang Y, Zhang P, Zhou JP, Liu XG (2012) Replication and fine mapping for association of the C2orf43, FOXP4, GPRC6A and RFX6 genes with prostate cancer in the Chinese population. PLoS ONE 7(5):e37866. https://doi.org/10.1371/journal.pone.0037866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lou W, Ding B, Zhong G, Du C, Fan W, Fu P (2019) Dysregulation of pseudogene/lncRNA-hsa-miR-363–3p-SPOCK2 pathway fuels stage progression of ovarian cancer. Aging (Albany NY) 11(23):11416–11439. https://doi.org/10.18632/aging.102538

    Article  CAS  PubMed  Google Scholar 

  95. Lu YB, Jiang Q, Yang MY, Zhou JX, Zhang Q (2017) Long noncoding RNA NNT-AS1 promotes hepatocellular carcinoma progression and metastasis through miR-363/CDK6 axis. Oncotarget 8(51):88804–88814. https://doi.org/10.18632/oncotarget.21321

    Article  PubMed  PubMed Central  Google Scholar 

  96. Luengo A, Abbott KL, Davidson SM, Hosios AM, Faubert B, Chan SH, Freinkman E, Zacharias LG, Mathews TP, Clish CB, DeBerardinis RJ, Lewis CA, Vander Heiden MG (2019) Reactive metabolite production is a targetable liability of glycolytic metabolism in lung cancer. Nat Commun 10(1):5604. https://doi.org/10.1038/s41467-019-13419-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ma L, Sun X, Kuai W, Hu J, Yuan Y, Feng W, Lu X (2019) LncRNA SOX2 overlapping transcript acts as a miRNA sponge to promote the proliferation and invasion of Ewing’s sarcoma. Am J Transl Res 11(6):3841–3849

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Ma HF, He WW, Wang JJ (2020) Long noncoding RNA LINC00858 promotes the proliferation, migration and invasion of gastric cancer cells via the miR-363–3p/FOXP4 axis. Eur Rev Med Pharmacol Sci 24(18):9391–9399. https://doi.org/10.26355/eurrev_202009_23022

    Article  PubMed  Google Scholar 

  99. Ma X, Jin L, Lei X, Tong J, Wang R (2020) MicroRNA-363-3p inhibits cell proliferation and induces apoptosis in retinoblastoma cells via the Akt/mTOR signaling pathway by targeting PIK3CA. Oncol Rep 43(5):1365–1374. https://doi.org/10.3892/or.2020.7544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Maga G, Hubscher U (2003) Proliferating cell nuclear antigen (PCNA): a dancer with many partners. J Cell Sci 116(Pt 15):3051–3060. https://doi.org/10.1242/jcs.00653

    Article  CAS  PubMed  Google Scholar 

  101. Mahmoudian RA, Akhlaghipour I, Lotfi M, Shahidsales S, Moghbeli M (2023) Circular RNAs as the pivotal regulators of epithelial-mesenchymal transition in gastrointestinal tumor cells. Pathol - Res Pract 245:154472. https://doi.org/10.1016/j.prp.2023.154472

    Article  CAS  PubMed  Google Scholar 

  102. Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9(3):153–166. https://doi.org/10.1038/nrc2602

    Article  CAS  PubMed  Google Scholar 

  103. Marumoto T, Zhang D, Saya H (2005) Aurora-A - a guardian of poles. Nat Rev Cancer 5(1):42–50. https://doi.org/10.1038/nrc1526

    Article  CAS  PubMed  Google Scholar 

  104. Maruoka H, Tanaka T, Murakami H, Tsuchihashi H, Toji A, Nunode M, Daimon A, Miyamoto S, Nishie R, Ueda S, Hashida S, Terada S, Konishi H, Kogata Y, Taniguchi K, Komura K, Ohmichi M (2022) Cancer-specific miRNAs extracted from tissue-exudative extracellular vesicles in ovarian clear cell carcinoma. Int J Mol Sci 23(24):15715. https://doi.org/10.3390/ijms232415715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Meng F, Cao B, Feng Z, Ma S, Wang H, Li Y, Li H (2014) Knockdown of mutated H-Ras V12 expression induces chemosensitivity of hepatocellular carcinoma cells to cisplatin treatment in vitro and in nude mouse xenografts. Oncol Rep 32(5):2023–2030. https://doi.org/10.3892/or.2014.3466

    Article  CAS  PubMed  Google Scholar 

  106. Meng W, Wang PS, Liu J, Xue S, Wang GM, Meng XY, Chen G (2014) Adenovirus-mediated siRNA targeting NOB1 inhibits tumor growth and enhances radiosensitivity of human papillary thyroid carcinoma in vitro and in vivo. Oncol Rep 32(6):2411–2420. https://doi.org/10.3892/or.2014.3483

    Article  CAS  PubMed  Google Scholar 

  107. Micel LN, Tentler JJ, Smith PG, Eckhardt GS (2013) Role of ubiquitin ligases and the proteasome in oncogenesis: novel targets for anticancer therapies. J Clin Oncol 31(9):1231–1238. https://doi.org/10.1200/JCO.2012.44.0958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Miller AV, Alvarez SE, Spiegel S, Lebman DA (2008) Sphingosine kinases and sphingosine-1-phosphate are critical for transforming growth factor beta-induced extracellular signal-regulated kinase 1 and 2 activation and promotion of migration and invasion of esophageal cancer cells. Mol Cell Biol 28(12):4142–4151. https://doi.org/10.1128/mcb.01465-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Moghbeli M (2021) Molecular interactions of miR-338 during tumor progression and metastasis. Cell Mol Biol Lett 26(1):13. https://doi.org/10.1186/s11658-021-00257-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Moghbeli M (2021) MicroRNAs as the critical regulators of Cisplatin resistance in ovarian cancer cells. J Ovarian Res 14(1):127. https://doi.org/10.1186/s13048-021-00882-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Moghbeli M, Makhdoumi Y, Soltani Delgosha M, Aarabi A, Dadkhah E, Memar B, Abdollahi A, Abbaszadegan MR (2019) ErbB1 and ErbB3 co-over expression as a prognostic factor in gastric cancer. Biol Res 52(1):2. https://doi.org/10.1186/s40659-018-0208-1

    Article  PubMed  PubMed Central  Google Scholar 

  112. Moghbeli M, Zangouei AS, Nasrpour Navaii Z, Taghehchian N (2021) Molecular mechanisms of the microRNA-132 during tumor progressions. Cancer Cell Int 21(1):439. https://doi.org/10.1186/s12935-021-02149-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Mohamed Z, Hassan MK, Okasha S, Mitamura T, Keshk S, Konno Y, Kato T, El-Khamisy SF, Ohba Y, Watari H (2018) miR-363 confers taxane resistance in ovarian cancer by targeting the Hippo pathway member, LATS2. Oncotarget 9(53):30053–30065. https://doi.org/10.18632/oncotarget.25698

    Article  PubMed  PubMed Central  Google Scholar 

  114. Mojsa B, Lassot I, Desagher S (2014) Mcl-1 ubiquitination: unique regulation of an essential survival protein. Cells 3(2):418–437. https://doi.org/10.3390/cells3020418

    Article  PubMed  PubMed Central  Google Scholar 

  115. Momand J, Zambetti GP, Olson DC, George D, Levine AJ (1992) The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69(7):1237–1245. https://doi.org/10.1016/0092-8674(92)90644-r

    Article  CAS  PubMed  Google Scholar 

  116. Montazer M, Taghehchian N, Mojarrad M, Moghbeli M (2022) Role of microRNAs in regulation of WNT signaling pathway in urothelial and prostate cancers. Egypt J Med Hum Genet 23(1):1–12

    Article  Google Scholar 

  117. Mori K, Kitazawa R, Kondo T, Maeda S, Yamaguchi A, Kitazawa S (2006) Modulation of mouse RANKL gene expression by Runx2 and PKA pathway. J Cell Biochem 98(6):1629–1644. https://doi.org/10.1002/jcb.20891

    Article  CAS  PubMed  Google Scholar 

  118. Murray AW (2004) Recycling the cell cycle: cyclins revisited. Cell 116(2):221–234. https://doi.org/10.1016/s0092-8674(03)01080-8

    Article  CAS  PubMed  Google Scholar 

  119. Myatt SS, Lam EW (2007) The emerging roles of forkhead box (Fox) proteins in cancer. Nat Rev Cancer 7(11):847–859. https://doi.org/10.1038/nrc2223

    Article  CAS  PubMed  Google Scholar 

  120. Narita M, Nũnez S, Heard E, Narita M, Lin AW, Hearn SA, Spector DL, Hannon GJ, Lowe SW (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113(6):703–716. https://doi.org/10.1016/s0092-8674(03)00401-x

    Article  CAS  PubMed  Google Scholar 

  121. Nasimi Shad A, Fanoodi A, Maharati A, Akhlaghipour I, Moghbeli M (2023) Molecular mechanisms of microRNA-301a during tumor progression and metastasis. Pathol - Res Pract 247:154538. https://doi.org/10.1016/j.prp.2023.154538

    Article  CAS  PubMed  Google Scholar 

  122. Nasrpour Navaei Z, Taghehchian N, Zangouei AS, Abbaszadegan MR, Moghbeli M (2023) MicroRNA-506 as a tumor suppressor in anaplastic thyroid carcinoma by regulation of WNT and NOTCH signaling pathways. Iran J Basic Med Sci 26(5):594–602. https://doi.org/10.22038/IJBMS.2023.69174.15069

    Article  PubMed  PubMed Central  Google Scholar 

  123. Navaei ZN, Khalili-Tanha G, Zangouei AS, Abbaszadegan MR, Moghbeli M (2021) PI3K/AKT signaling pathway as a critical regulator of Cisplatin response in tumor cells. Oncol Res 29(4):235–250. https://doi.org/10.32604/or.2022.025323

    Article  PubMed  Google Scholar 

  124. Neophytou CM, Trougakos IP, Erin N, Papageorgis P (2021) Apoptosis deregulation and the development of cancer multi-drug resistance. Cancers 13(17):4363. https://doi.org/10.3390/cancers13174363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Nieto MA, Huang RY, Jackson RA, Thiery JP (2016) EMT: 2016. Cell 166(1):21–45. https://doi.org/10.1016/j.cell.2016.06.028

    Article  CAS  PubMed  Google Scholar 

  126. Ochoa CY, Buchanan Lunsford N, Lee Smith J (2020) Impact of informal cancer caregiving across the cancer experience: A systematic literature review of quality of life. Palliat Support Care 18(2):220–240. https://doi.org/10.1017/S1478951519000622

    Article  PubMed  PubMed Central  Google Scholar 

  127. Ou Y, Zhai D, Wu N, Li X (2015) Downregulation of miR-363 increases drug resistance in cisplatin-treated HepG2 by dysregulating Mcl-1. Gene 572(1):116–122. https://doi.org/10.1016/j.gene.2015.07.002

    Article  CAS  PubMed  Google Scholar 

  128. Pallante P, Sepe R, Puca F, Fusco A (2015) High mobility group a proteins as tumor markers. Front Med (Lausanne) 2:15. https://doi.org/10.3389/fmed.2015.00015

    Article  PubMed  Google Scholar 

  129. Park SY, Jeong MS, Han CW, Yu HS, Jang SB (2016) Structural and functional insight into proliferating cell nuclear antigen. J Microbiol Biotechnol 26(4):637–647. https://doi.org/10.4014/jmb.1509.09051

    Article  CAS  PubMed  Google Scholar 

  130. Piatkov I, Caetano D, Assur Y, Lau SL, Jones T, Boyages SC, McLean M (2017) ABCB1 and ABCC1 single-nucleotide polymorphisms in patients treated with clozapine. Pharmgenomics Pers Med 10:235–242. https://doi.org/10.2147/pgpm.S142314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Polyak K, Weinberg RA (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9(4):265–273. https://doi.org/10.1038/nrc2620

    Article  CAS  PubMed  Google Scholar 

  132. Puisieux A, Brabletz T, Caramel J (2014) Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol 16(6):488–494. https://doi.org/10.1038/ncb2976

    Article  CAS  PubMed  Google Scholar 

  133. Qi L, Zhu F, Li SH, Si LB, Hu LK, Tian H (2014) Retinoblastoma binding protein 2 (RBP2) promotes HIF-1α-VEGF-induced angiogenesis of non-small cell lung cancer via the Akt pathway. PLoS ONE 9(8):e106032. https://doi.org/10.1371/journal.pone.0106032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Qin Q, Xu Y, He T, Qin C, Xu J (2012) Normal and disease-related biological functions of Twist1 and underlying molecular mechanisms. Cell Res 22(1):90–106. https://doi.org/10.1038/cr.2011.144

    Article  CAS  PubMed  Google Scholar 

  135. Ramchand SK, Cheung YM, Yeo B, Grossmann M (2019) The effects of adjuvant endocrine therapy on bone health in women with breast cancer. J Endocrinol 241(3):R111-r124. https://doi.org/10.1530/joe-19-0077

    Article  CAS  PubMed  Google Scholar 

  136. Redmer T, Welte Y, Behrens D, Fichtner I, Przybilla D, Wruck W, Yaspo ML, Lehrach H, Schäfer R, Regenbrecht CR (2014) The nerve growth factor receptor CD271 is crucial to maintain tumorigenicity and stem-like properties of melanoma cells. PLoS ONE 9(5):e92596. https://doi.org/10.1371/journal.pone.0092596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ren L, Zhou H, Lei L, Zhang Y, Cai H, Wang X (2021) Long non-coding RNA FOXD3 antisense RNA 1 augments anti-estrogen resistance in breast cancer cells through the microRNA-363/ trefoil factor 1/ phosphatidylinositol 3-kinase/protein kinase B axis. Bioengineered 12(1):5266–5278. https://doi.org/10.1080/21655979.2021.1962694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Rocca PC, Brunelli M, Gobbo S, Eccher A, Bragantini E, Mina MM, Ficarra V, Zattoni F, Zamò A, Pea M, Scarpa A, Chilosi M, Menestrina F, Bonetti F, Eble JN, Martignoni G (2007) Diagnostic utility of S100A1 expression in renal cell neoplasms: an immunohistochemical and quantitative RT-PCR study. Mod Pathol 20(7):722–728. https://doi.org/10.1038/modpathol.3800828

    Article  CAS  PubMed  Google Scholar 

  139. Rong H, Chen B, Wei X, Peng J, Ma K, Duan S, He J (2020) Long non-coding RNA XIST expedites lung adenocarcinoma progression through upregulating MDM2 expression via binding to miR-363-3p. Thorac Cancer 11(3):659–671. https://doi.org/10.1111/1759-7714.13310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Rosenfeld N, Aharonov R, Meiri E, Rosenwald S, Spector Y, Zepeniuk M, Benjamin H, Shabes N, Tabak S, Levy A, Lebanony D, Goren Y, Silberschein E, Targan N, Ben-Ari A, Gilad S, Sion-Vardy N, Tobar A, Feinmesser M, Kharenko O, Nativ O, Nass D, Perelman M, Yosepovich A, Shalmon B, Polak-Charcon S, Fridman E, Avniel A, Bentwich I, Bentwich Z, Cohen D, Chajut A, Barshack I (2008) MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol 26(4):462–469. https://doi.org/10.1038/nbt1392

    Article  CAS  PubMed  Google Scholar 

  141. Saunier E, Benelli C, Bortoli S (2016) The pyruvate dehydrogenase complex in cancer: an old metabolic gatekeeper regulated by new pathways and pharmacological agents. Int J Cancer 138(4):809–817. https://doi.org/10.1002/ijc.29564

    Article  CAS  PubMed  Google Scholar 

  142. Schito L, Rey S, Tafani M, Zhang H, Wong CC, Russo A, Russo MA, Semenza GL (2012) Hypoxia-inducible factor 1-dependent expression of platelet-derived growth factor B promotes lymphatic metastasis of hypoxic breast cancer cells. Proc Natl Acad Sci U S A 109(40):E2707-2716. https://doi.org/10.1073/pnas.1214019109

    Article  PubMed  PubMed Central  Google Scholar 

  143. Scott M, Bonnefin P, Vieyra D, Boisvert FM, Young D, Bazett-Jones DP, Riabowol K (2001) UV-induced binding of ING1 to PCNA regulates the induction of apoptosis. J Cell Sci 114(Pt 19):3455–3462. https://doi.org/10.1242/jcs.114.19.3455

    Article  CAS  PubMed  Google Scholar 

  144. Shah MY, Ferrajoli A, Sood AK, Lopez-Berestein G, Calin GA (2016) microRNA therapeutics in cancer - an emerging concept. EBioMedicine 12:34–42. https://doi.org/10.1016/j.ebiom.2016.09.017

    Article  PubMed  PubMed Central  Google Scholar 

  145. Shi J, Wang Y, Zeng L, Wu Y, Deng J, Zhang Q, Lin Y, Li J, Kang T, Tao M, Rusinova E, Zhang G, Wang C, Zhu H, Yao J, Zeng YX, Evers BM, Zhou MM, Zhou BP (2014) Disrupting the interaction of BRD4 with diacetylated Twist suppresses tumorigenesis in basal-like breast cancer. Cancer Cell 25(2):210–225. https://doi.org/10.1016/j.ccr.2014.01.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Siddik ZH (2003) Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22(47):7265–7279. https://doi.org/10.1038/sj.onc.1206933

    Article  CAS  PubMed  Google Scholar 

  147. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics for Hispanics/Latinos, 2012. CA Cancer J Clin 62(5):283–298. https://doi.org/10.3322/caac.21153

    Article  PubMed  Google Scholar 

  148. Sokilde R, Vincent M, Moller AK, Hansen A, Hoiby PE, Blondal T, Nielsen BS, Daugaard G, Moller S, Litman T (2014) Efficient identification of miRNAs for classification of tumor origin. J Mol Diagn: JMD 16(1):106–115. https://doi.org/10.1016/j.jmoldx.2013.10.001

    Article  CAS  PubMed  Google Scholar 

  149. Song B, Yan J, Liu C, Zhou H, Zheng Y (2015) Tumor suppressor role of miR-363–3p in gastric cancer. Med Sci Monit 21:4074–4080. https://doi.org/10.12659/msm.896556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Sorci G, Agneletti AL, Donato R (2000) Effects of S100A1 and S100B on microtubule stability. An in vitro study using triton-cytoskeletons from astrocyte and myoblast cell lines. Neuroscience 99(4):773–783. https://doi.org/10.1016/s0306-4522(00)00238-4

    Article  CAS  PubMed  Google Scholar 

  151. Sun Q, Zhang J, Cao W, Wang X, Xu Q, Yan M, Wu X, Chen W (2013) Dysregulated miR-363 affects head and neck cancer invasion and metastasis by targeting podoplanin. Int J Biochem Cell Biol 45(3):513–520. https://doi.org/10.1016/j.biocel.2012.12.004

    Article  CAS  PubMed  Google Scholar 

  152. Sun XR, Sun Z, Zhu Z, Guan HX, Li CY, Zhang JY, Zhang YN, Zhou H, Zhang HJ, Xu HM, Sun MJ (2015) Expression of pyruvate dehydrogenase is an independent prognostic marker in gastric cancer. World J Gastroenterol 21(17):5336–5344. https://doi.org/10.3748/wjg.v21.i17.5336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660

    Article  CAS  PubMed  Google Scholar 

  154. Takahashi Y, Sawada G, Kurashige J, Uchi R, Matsumura T, Ueo H, Takano Y, Akiyoshi S, Eguchi H, Sudo T, Sugimachi K, Doki Y, Mori M, Mimori K (2013) Paired related homoeobox 1, a new EMT inducer, is involved in metastasis and poor prognosis in colorectal cancer. Br J Cancer 109(2):307–311. https://doi.org/10.1038/bjc.2013.339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Tam CW, Cheng AS, Ma RY, Yao KM, Shiu SY (2006) Inhibition of prostate cancer cell growth by human secreted PDZ domain-containing protein 2, a potential autocrine prostate tumor suppressor. Endocrinology 147(11):5023–5033. https://doi.org/10.1210/en.2006-0207

    Article  CAS  PubMed  Google Scholar 

  156. Tam CW, Liu VW, Leung WY, Yao KM, Shiu SY (2008) The autocrine human secreted PDZ domain-containing protein 2 (sPDZD2) induces senescence or quiescence of prostate, breast and liver cancer cells via transcriptional activation of p53. Cancer Lett 271(1):64–80. https://doi.org/10.1016/j.canlet.2008.05.047

    Article  CAS  PubMed  Google Scholar 

  157. Teufel A, Wong EA, Mukhopadhyay M, Malik N, Westphal H (2003) FoxP4, a novel forkhead transcription factor. Biochim Biophys Acta 1627(2–3):147–152. https://doi.org/10.1016/s0167-4781(03)00074-5

    Article  CAS  PubMed  Google Scholar 

  158. Tian T, Li X, Hua Z, Ma J, Liu Z, Chen H, Cui Z (2017) S100A1 promotes cell proliferation and migration and is associated with lymph node metastasis in ovarian cancer. Discov Med 23(127):235–245

    PubMed  Google Scholar 

  159. Tolue Ghasaban F, Akhlaghipour I, Taghehchian N, Maharati A, Memar B, Moghbeli M (2023) MicroRNA-185: a non-invasive diagnostic and prognostic tumor marker. Process Biochem 130:645–658. https://doi.org/10.1016/j.procbio.2023.05.024

    Article  CAS  Google Scholar 

  160. Tong Z, Meng X, Wang J, Wang L (2017) MicroRNA-338-3p targets SOX4 and inhibits cell proliferation and invasion of renal cell carcinoma. Exp Ther Med 14(5):5200–5206. https://doi.org/10.3892/etm.2017.5169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Tsuji S, Kawasaki Y, Furukawa S, Taniue K, Hayashi T, Okuno M, Hiyoshi M, Kitayama J, Akiyama T (2014) The miR-363-GATA6-Lgr5 pathway is critical for colorectal tumourigenesis. Nat Commun 5:3150. https://doi.org/10.1038/ncomms4150

    Article  CAS  PubMed  Google Scholar 

  162. Tzavlaki K, Moustakas A (2020) TGF-beta signaling. Biomolecules 10(3):487. https://doi.org/10.3390/biom10030487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. van der Deen M, Akech J, Wang T, FitzGerald TJ, Altieri DC, Languino LR, Lian JB, van Wijnen AJ, Stein JL, Stein GS (2010) The cancer-related Runx2 protein enhances cell growth and responses to androgen and TGFbeta in prostate cancer cells. J Cell Biochem 109(4):828–837. https://doi.org/10.1002/jcb.22463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wang G, Sun Y, He Y, Ji C, Hu B, Sun Y (2015) MicroRNA-338-3p inhibits cell proliferation in hepatocellular carcinoma by target forkhead box P4 (FOXP4). Int J Clin Exp Pathol 8(1):337–344

    PubMed  PubMed Central  Google Scholar 

  165. Wang Z, Ma LJ, Kang Y, Li X, Zhang XJ (2015) Dickkopf-3 (Dkk3) induces apoptosis in cisplatin-resistant lung adenocarcinoma cells via the Wnt/β-catenin pathway. Oncol Rep 33(3):1097–1106. https://doi.org/10.3892/or.2014.3704

    Article  CAS  PubMed  Google Scholar 

  166. Wang SH, Zhang WJ, Wu XC, Weng MZ, Zhang MD, Cai Q, Zhou D, Wang JD, Quan ZW (2016) The lncRNA MALAT1 functions as a competing endogenous RNA to regulate MCL-1 expression by sponging miR-363-3p in gallbladder cancer. J Cell Mol Med 20(12):2299–2308. https://doi.org/10.1111/jcmm.12920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Wang Y, Chen T, Huang H, Jiang Y, Yang L, Lin Z, He H, Liu T, Wu B, Chen J, Kamp DW, Liu G (2017) miR-363–3p inhibits tumor growth by targeting PCNA in lung adenocarcinoma. Oncotarget 8(12):20133–20144. https://doi.org/10.18632/oncotarget.15448

    Article  PubMed  PubMed Central  Google Scholar 

  168. Wang X, Dong J, Jia L, Zhao T, Lang M, Li Z, Lan C, Li X, Hao J, Wang H, Qin T, Huang C, Yang S, Yu M, Ren H (2017) HIF-2-dependent expression of stem cell factor promotes metastasis in hepatocellular carcinoma. Cancer Lett 393:113–124. https://doi.org/10.1016/j.canlet.2017.01.032

    Article  CAS  PubMed  Google Scholar 

  169. Wang L, Zhao S, Mingxin YU (2019) LncRNA NR2F1-AS1 is involved in the progression of endometrial cancer by sponging miR-363 to target SOX4. Pharmazie 74(5):295–300. https://doi.org/10.1691/ph.2019.8905

    Article  CAS  PubMed  Google Scholar 

  170. Wang J, Liang H, Ge H, Guo X, Gu D, Yuan Y (2019) MicroRNA-363-3p inhibits hepatocarcinogenesis by targeting HMGA2 and is associated with liver cancer stage. Mol Med Rep 19(2):935–942. https://doi.org/10.3892/mmr.2018.9711

    Article  CAS  PubMed  Google Scholar 

  171. Wang K, Yan L, Lu F (2019) miR-363-3p inhibits osteosarcoma cell proliferation and invasion via targeting SOX4. Oncol Res 27(2):157–163. https://doi.org/10.3727/096504018x15190861873459

    Article  PubMed  PubMed Central  Google Scholar 

  172. Wang J, Tang Q, Lu L, Luo Z, Li W, Lu Y, Pu J (2020) LncRNA OIP5-AS1 interacts with miR-363-3p to contribute to hepatocellular carcinoma progression through up-regulation of SOX4. Gene Ther 27(10):495–504. https://doi.org/10.1038/s41434-020-0123-2

    Article  Google Scholar 

  173. Wang X, Qian T, Bao S, Zhao H, Chen H, Xing Z, Li Y, Zhang M, Meng X, Wang C, Wang J, Gao H, Liu J, Zhou M, Wang X (2021) Circulating exosomal miR-363-5p inhibits lymph node metastasis by downregulating PDGFB and serves as a potential noninvasive biomarker for breast cancer. Mol Oncol 15(9):2466–2479. https://doi.org/10.1002/1878-0261.13029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Welcker M, Clurman BE (2008) FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer 8(2):83–93. https://doi.org/10.1038/nrc2290

    Article  CAS  PubMed  Google Scholar 

  175. Wiercinska E, Naber HP, Pardali E, van der Pluijm G, van Dam H, ten Dijke P (2011) The TGF-β/Smad pathway induces breast cancer cell invasion through the up-regulation of matrix metalloproteinase 2 and 9 in a spheroid invasion model system. Breast Cancer Res Treat 128(3):657–666. https://doi.org/10.1007/s10549-010-1147-x

    Article  CAS  PubMed  Google Scholar 

  176. Wilson TR, Johnston PG, Longley DB (2009) Anti-apoptotic mechanisms of drug resistance in cancer. Curr Cancer Drug Targets 9(3):307–319. https://doi.org/10.2174/156800909788166547

    Article  CAS  PubMed  Google Scholar 

  177. Wu J, Yang L, Shan Y, Cai C, Wang S, Zhang H (2016) AURKA promotes cell migration and invasion of head and neck squamous cell carcinoma through regulation of the AURKA/Akt/FAK signaling pathway. Oncol Lett 11(3):1889–1894. https://doi.org/10.3892/ol.2016.4110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Xi J, Feng J, Zeng S (2017) Long noncoding RNA lncBRM facilitates the proliferation, migration and invasion of ovarian cancer cells via upregulation of Sox4. Am J Cancer Res 7(11):2180–2189

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Xie Y, Chen L, Gao Y, Ma X, He W, Zhang Y, Zhang F, Fan Y, Gu L, Li P, Zhang X, Gou X (2020) miR-363 suppresses the proliferation, migration and invasion of clear cell renal cell carcinoma by downregulating S1PR1. Cancer Cell Int 20(1):227. https://doi.org/10.1186/s12935-020-01313-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Xu H, Hu Y, Qiu W (2017) Potential mechanisms of microRNA-129-5p in inhibiting cell processes including viability, proliferation, migration and invasiveness of glioblastoma cells U87 through targeting FNDC3B. Biomed Pharmacother 87:405–411. https://doi.org/10.1016/j.biopha.2016.12.100

    Article  CAS  PubMed  Google Scholar 

  181. Xu DX, Guo JJ, Zhu GY, Wu HJ, Zhang QS, Cui T (2018) MiR-363–3p modulates cell growth and invasion in glioma by directly targeting pyruvate dehydrogenase B. Eur Rev Med Pharmacol Sci 22(16):5230–5239. https://doi.org/10.26355/eurrev_201808_15721

    Article  PubMed  Google Scholar 

  182. Xu LZ, Ning JZ, Ruan Y, Cheng F (2022) MiR-363-3p promotes prostate cancer tumor progression by targeting Dickkopf 3. J Clin Lab Anal 36(4):e24360. https://doi.org/10.1002/jcla.24360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Yamasaki R, Berri M, Wu Y, Trombitás K, McNabb M, Kellermayer MS, Witt C, Labeit D, Labeit S, Greaser M, Granzier H (2001) Titin-actin interaction in mouse myocardium: passive tension modulation and its regulation by calcium/S100A1. Biophys J 81(4):2297–2313. https://doi.org/10.1016/s0006-3495(01)75876-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Yang C, Han S (2021) The circular RNA circ0005654 interacts with specificity protein 1 via microRNA-363 sequestration to promote gastric cancer progression. Bioengineered 12(1):6305–6317. https://doi.org/10.1080/21655979.2021.1971031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Yang MH, Hsu DS, Wang HW, Wang HJ, Lan HY, Yang WH, Huang CH, Kao SY, Tzeng CH, Tai SK, Chang SY, Lee OK, Wu KJ (2010) Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. Nat Cell Biol 12(10):982–992. https://doi.org/10.1038/ncb2099

    Article  CAS  PubMed  Google Scholar 

  186. Yang T, Li H, Thakur A, Chen T, Xue J, Li D, Chen M (2015) FOXP4 modulates tumor growth and independently associates with miR-138 in non-small cell lung cancer cells. Tumour Biol 36(10):8185–8191. https://doi.org/10.1007/s13277-015-3498-8

    Article  CAS  PubMed  Google Scholar 

  187. Yang Y-F, Zhang M-F, Tian Q-H, Fu J, Yang X, Zhang CZ, Yang H (2018) SPAG5 interacts with CEP55 and exerts oncogenic activities via PI3K/AKT pathway in hepatocellular carcinoma. Mol Cancer 17(1):117. https://doi.org/10.1186/s12943-018-0872-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Yang N, Zhu S, Lv X, Qiao Y, Liu Y-J, Chen J (2018) MicroRNAs: pleiotropic regulators in the tumor microenvironment. Front Immunol 9:2491

    Article  PubMed  PubMed Central  Google Scholar 

  189. Yao J, Yao X, Tian T, Fu X, Wang W, Li S, Shi T, Suo A, Ruan Z, Guo H, Nan K, Huo X (2017) ABCB5-ZEB1 axis promotes invasion and metastasis in breast cancer cells. Oncol Res 25(3):305–316. https://doi.org/10.3727/096504016x14734149559061

    Article  PubMed  PubMed Central  Google Scholar 

  190. Yin H, Subrata S, Yang W, Yang G (2001) Overexpression of cyclin A leads to S-phase arrested apoptosis. Hua Xi Yi Ke Da Xue Xue Bao 32(2):188–190

    CAS  PubMed  Google Scholar 

  191. Ying J, Yu X, Ma C, Zhang Y, Dong J (2017) MicroRNA-363-3p is downregulated in hepatocellular carcinoma and inhibits tumorigenesis by directly targeting specificity protein 1. Mol Med Rep 16(2):1603–1611. https://doi.org/10.3892/mmr.2017.6759

    Article  CAS  PubMed  Google Scholar 

  192. Yokobori T, Mimori K, Iwatsuki M, Ishii H, Onoyama I, Fukagawa T, Kuwano H, Nakayama KI, Mori M (2009) p53-Altered FBXW7 expression determines poor prognosis in gastric cancer cases. Cancer Res 69(9):3788–3794. https://doi.org/10.1158/0008-5472.Can-08-2846

    Article  CAS  PubMed  Google Scholar 

  193. Yoshida K, Murata M, Yamaguchi T, Matsuzaki K (2014) TGF-β/Smad signaling during hepatic fibro-carcinogenesis (review). Int J Oncol 45(4):1363–1371. https://doi.org/10.3892/ijo.2014.2552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Yu FX, Guan KL (2013) The Hippo pathway: regulators and regulations. Genes Dev 27(4):355–371. https://doi.org/10.1101/gad.210773.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Zamble DB, Lippard SJ (1995) Cisplatin and DNA repair in cancer chemotherapy. Trends Biochem Sci 20(10):435–439. https://doi.org/10.1016/s0968-0004(00)89095-7

    Article  CAS  PubMed  Google Scholar 

  196. Zangouei AS, Moghbeli M (2021) MicroRNAs as the critical regulators of cisplatin resistance in gastric tumor cells. Genes Environ 43(1):21. https://doi.org/10.1186/s41021-021-00192-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Zangouei AS, Rahimi HR, Mojarrad M, Moghbeli M (2020) Non coding RNAs as the critical factors in chemo resistance of bladder tumor cells. Diagn Pathol 15(1):136. https://doi.org/10.1186/s13000-020-01054-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Zangouei AS, Alimardani M, Moghbeli M (2021) MicroRNAs as the critical regulators of Doxorubicin resistance in breast tumor cells. Cancer Cell Int 21(1):213. https://doi.org/10.1186/s12935-021-01873-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Zbytek B, Peacock DL, Seagroves TN, Slominski A (2013) Putative role of HIF transcriptional activity in melanocytes and melanoma biology. Dermatoendocrinol 5(2):239–251. https://doi.org/10.4161/derm.22678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Zeng SHG, Xie JH, Zeng QY, Dai SHH, Wang Y, Wan XM, Liu JCH (2021) lncRNA PVT1 promotes metastasis of non-small cell lung cancer through EZH2-mediated activation of Hippo/NOTCH1 signaling pathways. Cell J 23(1):21–31. https://doi.org/10.22074/cellj.2021.7010

    Article  PubMed  PubMed Central  Google Scholar 

  201. Zhang Y, Ni J, Zhou G, Yuan J, Ren W, Shan Y, Tang W, Yu L, Zhao S (2005) Cloning, expression and characterization of the human NOB1 gene. Mol Biol Rep 32(3):185–189. https://doi.org/10.1007/s11033-005-3141-7

    Article  CAS  PubMed  Google Scholar 

  202. Zhang R, Li Y, Dong X, Peng L, Nie X (2014) MiR-363 sensitizes cisplatin-induced apoptosis targeting in Mcl-1 in breast cancer. Med Oncol 31(12):347. https://doi.org/10.1007/s12032-014-0347-3

    Article  CAS  PubMed  Google Scholar 

  203. Zhang PF, Sheng LL, Wang G, Tian M, Zhu LY, Zhang R, Zhang J, Zhu JS (2016) miR-363 promotes proliferation and chemo-resistance of human gastric cancer via targeting of FBW7 ubiquitin ligase expression. Oncotarget 7(23):35284–35292. https://doi.org/10.18632/oncotarget.9169

    Article  PubMed  PubMed Central  Google Scholar 

  204. Zhang Y, Wang F, Wang L, Zhang Q (2020) MiR-363 suppresses cell migration, invasion, and epithelial-mesenchymal transition of osteosarcoma by binding to NOB1. World J Surg Oncol 18(1):83. https://doi.org/10.1186/s12957-020-01859-y

    Article  PubMed  PubMed Central  Google Scholar 

  205. Zhang L, Wang L, Lu N, Wang J, Yan R, Yan H, Zhang J, Zhang M (2020) Micro RNA-363 inhibits esophageal squamous cell carcinoma progression by directly targeting sperm-associated antigen 5. J Int Med Res 48(6):300060520932795. https://doi.org/10.1177/0300060520932795

    Article  CAS  PubMed  Google Scholar 

  206. Zhang W, Wang H, Sun M, Deng X, Wu X, Ma Y, Li M, Shuoa SM, You Q, Miao L (2020) CXCL5/CXCR2 axis in tumor microenvironment as potential diagnostic biomarker and therapeutic target. Cancer Commun (Lond) 40(2–3):69–80. https://doi.org/10.1002/cac2.12010

    Article  CAS  PubMed  Google Scholar 

  207. Zhang Y, Zheng S, Liao N, Huang H, Chen W, Wu Z, Wu D (2021) CircCTNNA1 acts as a ceRNA for miR-363-3p to facilitate the progression of colorectal cancer by promoting CXCL5 expression. J Biol Res (Thessalon) 28(1):7. https://doi.org/10.1186/s40709-021-00135-8

    Article  CAS  PubMed  Google Scholar 

  208. Zhang T, Yu S, Zhao S (2021) LncRNA FEZF1-AS1 promotes colorectal cancer progression through regulating the miR-363–3p/PRRX1 pathway. Adv Clin Exp Med 30(8):839–848. https://doi.org/10.17219/acem/135693

    Article  PubMed  Google Scholar 

  209. Zhang Y, Peng C, Li J, Zhang D, Zhang C, Jin K, Ji D, Peng W, Tang J, Feng Y, Sun Y (2022) Long non-coding RNA CCDC144NL-AS1 promotes cell proliferation by regulating the miR-363-3p/GALNT7 axis in colorectal cancer. J Cancer 13(3):752–763. https://doi.org/10.7150/jca.65885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Zhao J, Ou B, Han D, Wang P, Zong Y, Zhu C, Liu D, Zheng M, Sun J, Feng H, Lu A (2017) Tumor-derived CXCL5 promotes human colorectal cancer metastasis through activation of the ERK/Elk-1/Snail and AKT/GSK3β/β-catenin pathways. Mol Cancer 16(1):70. https://doi.org/10.1186/s12943-017-0629-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Zheng Y, Sowers JY, Houston KD (2020) IGFBP-1 expression promotes tamoxifen resistance in breast cancer cells via Erk pathway activation. Front Endocrinol (Lausanne) 11:233. https://doi.org/10.3389/fendo.2020.00233

    Article  PubMed  Google Scholar 

  212. Zhong N, Shi S, Wang H, Wu G, Wang Y, Ma Q, Wang H, Liu Y, Wang J (2016) Silencing Aurora-A with siRNA inhibits cell proliferation in human lung adenocarcinoma cells. Int J Oncol 49(3):1028–1038. https://doi.org/10.3892/ijo.2016.3605

    Article  CAS  PubMed  Google Scholar 

  213. Zhong Z, Zhang H, Hong M, Sun C, Xu Y, Chen X, Gao C, He M, Liu W, Liang J (2018) FNDC3B promotes epithelial-mesenchymal transition in tongue squamous cell carcinoma cells in a hypoxic microenvironment. Oncol Rep 39(4):1853–1859. https://doi.org/10.3892/or.2018.6231

    Article  CAS  PubMed  Google Scholar 

  214. Zhou P, Huang G, Zhao Y, Zhong D, Xu Z, Zeng Y, Zhang Y, Li S, He F (2014) MicroRNA-363-mediated downregulation of S1PR1 suppresses the proliferation of hepatocellular carcinoma cells. Cell Signal 26(6):1347–1354. https://doi.org/10.1016/j.cellsig.2014.02.020

    Article  CAS  PubMed  Google Scholar 

  215. Zhou SL, Zhou ZJ, Hu ZQ, Li X, Huang XW, Wang Z, Fan J, Dai Z, Zhou J (2015) CXCR2/CXCL5 axis contributes to epithelial-mesenchymal transition of HCC cells through activating PI3K/Akt/GSK-3β/Snail signaling. Cancer Lett 358(2):124–135. https://doi.org/10.1016/j.canlet.2014.11.044

    Article  CAS  PubMed  Google Scholar 

  216. Zimmer DB, Dubuisson JG (1993) Identification of an S100 target protein: glycogen phosphorylase. Cell Calcium 14(4):323–332. https://doi.org/10.1016/0143-4160(93)90053-9

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research did not receive any grant.

Author information

Authors and Affiliations

Authors

Contributions

ANS, IA, ES, and HIA were involved in drafting and search strategy. MM designed and supervised the project. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Meysam Moghbeli.

Ethics declarations

Ethical approval

No ethic approval was needed for this publication.

Consent to participate

Not applicable.

Consent for publication

All authors consented to the publication.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasimi Shad, A., Akhlaghipour, I., Alshakarchi, H.I. et al. Role of microRNA-363 during tumor progression and invasion. J Physiol Biochem (2024). https://doi.org/10.1007/s13105-024-01022-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13105-024-01022-1

Keywords

Navigation