Skip to main content
Log in

Ovalbumin promotes innate immune response of Caenorhabditis elegans through DAF-16 and SKN-1 pathways in insulin/IGF-1 signaling

  • Research
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Ovalbumin (OVA) is a major allergen in eggs and could induce severe allergic reactions in sensitive individuals, where the innate immune system works as a regulator. The mechanism of how innate immunity adjusts to food allergy is relatively well-studied, however, the effects of allergen uptake on the innate immune system remain unclear. Therefore, the Caenorhabditis elegans (C. elegans) model was utilized to assess the effects of OVA on its innate immune system. OVA enhanced the immune response of C. elegans with higher survival rates under Pseudomonas aeruginosa infection. Moreover, sustaining OVA treatment improved the health states that were reflected in the prolonged lifespan, alleviated oxidative stress, accelerated growth, and promoted motility. RNA-sequencing analysis and the slow-killing assays in the mutants of insulin/IGF-1 signaling (IIS)-related genes confirmed that IIS was necessary for OVA to regulate innate immunity. Besides, OVA activated SKN-1 temporarily and facilitated the nuclear localization of DAF-16 for improving immunity and health status in C. elegans. Together, OVA could enhance the innate immune responses via DAF-16 and SKN-1 pathways in the IIS of C. elegans, and this work will provide novel insights into the regulation of innate immunity by OVA in higher organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Altun ZF, Hall DH (2009) Introduction. In WormAtlas. https://doi.org/10.3908/wormatlas.1.1

  2. Amrit FRG, May RC (2010) Younger for longer: insulin signalling, immunity and ageing. Curr Aging Sci 3:166–176. https://doi.org/10.2174/1874609811003030166

    Article  CAS  PubMed  Google Scholar 

  3. An JH, Blackwell TK (2003) SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response. Genes Dev 17:1882–1893. https://doi.org/10.1101/gad.1107803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Arata Y, Oshima T, Ikeda Y, Kimura H, Sako Y (2020) OP50, a bacterial strain conventionally used as food for laboratory maintenance of C. elegans, is a biofilm formation defective mutant. MicroPubl Biol. https://doi.org/10.17912/micropub.biology.000216

  5. Ausubel FM, van der Hoeven R, McCallum KC, Cruz MR, Garsin DA (2011) Ce-Duox1/BLI-3 generated reactive oxygen species trigger protective SKN-1 activity via p38 MAPK signaling during infection in C. elegans. PLoS Pathog 7(12):e1002453. https://doi.org/10.1371/journal.ppat.1002453

    Article  CAS  Google Scholar 

  6. Back P, Braeckman BP, Matthijssens F (2012) ROS in aging Caenorhabditis elegans: damage or signaling? Oxid Med Cell Longev. https://doi.org/10.1155/2012/608478

  7. Battino M, Giampieri F, Pistollato F, Sureda A, de Oliveira MR, Pittalà V, Fallarino F, Nabavi SF, Atanasov AG, Nabavi SM (2018) Nrf2 as regulator of innate immunity: A molecular Swiss army knife! Biotechnol Adv 36:358–370. https://doi.org/10.1016/j.biotechadv.2017.12.012

    Article  CAS  PubMed  Google Scholar 

  8. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94. https://doi.org/10.1093/genetics/77.1.71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Caffarelli C, Giannetti A, Rossi A, Ricci G (2022) Egg allergy in children and weaning diet. Nutrients 14(8):1540. https://doi.org/10.3390/nu14081540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chavez V, Mohri-Shiomi A, Maadani A, Vega LA, Garsin DA (2007) Oxidative stress enzymes are required for DAF-16-mediated immunity due to generation of reactive oxygen species by Caenorhabditis elegans. Genetics 176:1567–1577. https://doi.org/10.1534/genetics.107.072587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cunningham-Rundles S, Lin H, Ho-Lin D, Dnistrian A, Cassileth BR, Perlman JM (2009) Role of nutrients in the development of neonatal immune response. Nutr Rev 67(Suppl 2):S152–S163. https://doi.org/10.1111/j.1753-4887.2009.00236.x

    Article  PubMed  Google Scholar 

  12. Dang A, Logsdon S, Hogan SP (2018) Investigating innate immune mechanisms in early-life development and outcomes of food allergy. J Allergy Clin Immunol 142:790–792. https://doi.org/10.1016/j.jaci.2018.08.001

    Article  PubMed  PubMed Central  Google Scholar 

  13. Detienne G, Van de Walle P, De Haes W, Schoofs L, Temmerman L (2016) SKN-1-independent transcriptional activation of glutathione S-transferase 4 (GST-4) by EGF signaling. Worm. https://doi.org/10.1080/21624054.2016.1230585

  14. Dona DW, Suphioglu C (2020) Egg allergy: Diagnosis and immunotherapy. Int J Mol Sci 21(14):5010. https://doi.org/10.3390/ijms21145010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ermolaeva MA, Schumacher B (2014) Insights from the worm: The C. elegans model for innate immunity. Semin Immunol 26:303–309. https://doi.org/10.1016/j.smim.2014.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ewald CY, Landis JN, Porter Abate J, Murphy CT, Blackwell TK (2015) Dauer-independent insulin/IGF-1-signalling implicates collagen remodelling in longevity. Nature 519:97–101. https://doi.org/10.1038/nature14021

    Article  CAS  PubMed  Google Scholar 

  17. Garcia-Diaz M, Huang Y-Y, Hamblin MR (2016) Use of fluorescent probes for ROS to tease apart Type I and Type II photochemical pathways in photodynamic therapy. Methods 109:158–166. https://doi.org/10.1016/j.ymeth.2016.06.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Garsin DA, Villanueva JM, Begun J, Kim DH, Sifri CD, Calderwood SB, Ruvkun G, Ausubel FM (2003) Long-lived C. elegans daf-2 mutants are resistant to bacterial pathogens. Science 300:1921. https://doi.org/10.1126/science.1080147

    Article  CAS  PubMed  Google Scholar 

  19. Golias J, Schwarzer M, Wallner M, Kverka M, Kozakova H, Srutkova D, Klimesova K, Sotkovsky P, Palova-Jelinkova L, Ferreira F, Tuckova L (2012) Heat-induced structural changes affect OVA-antigen processing and reduce allergic response in mouse model of food allergy. PLoS One 7(5):e37156. https://doi.org/10.1371/journal.pone.0037156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hampton T (2016) Hyperactive innate immunity at birth associated with food allergies. JAMA 315:860–860. https://doi.org/10.1001/jama.2016.0915

    Article  Google Scholar 

  21. Horspool AM, Chang HC (2017) Superoxide dismutase SOD-1 modulates C. elegans pathogen avoidance behavior. Sci Rep 7(1):45128. https://doi.org/10.1038/srep45128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. How CM, Li YS, Huang WY, Wei CC (2024) Early-life exposure to mycotoxin zearalenone exacerbates aberrant immune response, oxidative stress, and mortality of Caenorhabditis elegans under pathogen Bacillus thuringiensis infection. Ecotoxicol Environ Saf 272:116085. https://doi.org/10.1016/j.ecoenv.2024.116085

    Article  CAS  PubMed  Google Scholar 

  23. Hyun S (2013) Body size regulation and insulin-like growth factor signaling. Cell Mol Life Sci 70:2351–2365. https://doi.org/10.1007/s00018-013-1313-5

    Article  CAS  PubMed  Google Scholar 

  24. Jeong DE, Lee D, Hwang SY, Lee Y, Lee JE, Seo M, Hwang W, Seo K, Hwang AB, Artan M, Son HG, Jo JH, Baek H, Oh YM, Ryu Y, Kim HJ, Ha CM, Yoo JY, Lee SV (2017) Mitochondrial chaperone HSP-60 regulates anti-bacterial immunity via p38 MAP kinase signaling. EMBO J 36:1046–1065. https://doi.org/10.15252/embj.201694781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jiang S, Jiang CP, Cao P, Liu YH, Gao CH, Yi XX (2022) Sonneradon A extends lifespan of Caenorhabditis elegans by modulating mitochondrial and IIS signaling pathways. Mar Drugs 20(1):59. https://doi.org/10.3390/md20010059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Johari S, Nock V, Alkaisi MM, Wang W (2013) On-chip analysis of C. elegans muscular forces and locomotion patterns in microstructured environments. Lab Chip 13:1699–1707. https://doi.org/10.1039/c3lc41403e

    Article  CAS  PubMed  Google Scholar 

  27. Kanagaratham C, El Ansari YS, Lewis OL, Oettgen HC (2020) IgE and IgG antibodies as regulators of mast cell and basophil functions in food allergy. Front Immunol 11:603050. https://doi.org/10.3389/fimmu.2020.603050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim DH, Flavell SW (2020) Host-microbe interactions and the behavior of Caenorhabditis elegans. J Neurogenet 34:500–509. https://doi.org/10.1080/01677063.2020.1802724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kirienko NV, Cezairliyan BO, Ausubel FM, Powell JR (2014) Pseudomonas aeruginosa PA14 pathogenesis in Caenorhabditis elegans. Methods Mol Biol 1149:653–669. https://doi.org/10.1007/978-1-4939-0473-0_50

    Article  PubMed  Google Scholar 

  30. Kitisin T, Muangkaew W, Sukphopetch P (2022) Caenorhabditis elegans DAF-16 regulates lifespan and immune responses to Cryptococcus neoformans and Cryptococcus gattii infections. BMC Microbiol 22(1):162. https://doi.org/10.1186/s12866-022-02579-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee Y, Jung Y, Jeong DE, Hwang W, Ham S, Park HH, Kwon S, Ashraf JM, Murphy CT, Lee SV (2021) Reduced insulin/IGF1 signaling prevents immune aging via ZIP-10/bZIP-mediated feedforward loop. J Cell Biol 220(5):e202006174. https://doi.org/10.1083/jcb.202006174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li AJ, Wang Y, Zhang DC, Liu SX, Ye Y (2022) Formation of high-elasticity and high-strength semitransparent ovalbumin gel induced by alkali-heat treatment. Int J Food Prop 25:907–923. https://doi.org/10.1080/10942912.2022.2070201

    Article  CAS  Google Scholar 

  33. Liu EG, Yin X, Swaminathan A, Eisenbarth SC (2020) Antigen-presenting cells in food tolerance and allergy. Front Immunol 11:616020. https://doi.org/10.3389/fimmu.2020.616020

    Article  CAS  PubMed  Google Scholar 

  34. Lopez-Fandino R (2020) Role of dietary lipids in food allergy. Crit Rev Food Sci Nutr 60:1797–1814. https://doi.org/10.1080/10408398.2019.1602025

    Article  CAS  PubMed  Google Scholar 

  35. Lutter CK, Iannotti LL, Stewart CP (2018) The potential of a simple egg to improve maternal and child nutrition. Matern Child Nutr 14:e12678. https://doi.org/10.1111/mcn.12678

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ma W, Yue J, Liang S, Gao M, Wang X, Cui N, Li H, Zhi D (2021) Realgar increases defenses against infection by Enterococcus faecalis in Caenorhabditis elegans. J Ethnopharmacol 268:113559. https://doi.org/10.1016/j.jep.2020.113559

    Article  CAS  PubMed  Google Scholar 

  37. Markaki M, Tavernarakis N (2020) Caenorhabditis elegans as a model system for human diseases. Curr Opin Biotechnol 63:118–125. https://doi.org/10.1016/j.copbio.2019.12.011

    Article  CAS  PubMed  Google Scholar 

  38. McHugh DR, Koumis E, Jacob P, Goldfarb J, Schlaubitz-Garcia M, Bennani S, Regan P, Patel P, Youngman MJ (2020) DAF-16 and SMK-1 contribute to innate immunity during adulthood in Caenorhabditis elegans. G3 Genes|Genomes|Genetics 10:1521–1539. https://doi.org/10.1534/g3.120.401166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mir DA, Balamurugan K (2019) A proteomic analysis of Caenorhabditis elegans mitochondria during bacterial infection. Mitochondrion 48:37–50. https://doi.org/10.1016/j.mito.2019.03.002

    Article  CAS  PubMed  Google Scholar 

  40. Murphy CT, Hu PJ (2013) Insulin/insulin-like growth factor signaling in C. elegans. WormBook 26:1–43. https://doi.org/10.1895/wormbook.1.164.1

    Article  Google Scholar 

  41. Murphy CT, McCarroll SA, Bargmann CI, Fraser A, Kamath RS, Ahringer J, Li H, Kenyon C (2003) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424:277–284. https://doi.org/10.1038/nature01789

    Article  CAS  PubMed  Google Scholar 

  42. Nance J, Frokjaer-Jensen C (2019) The Caenorhabditis elegans transgenic toolbox. Genetics 212:959–990. https://doi.org/10.1534/genetics.119.301506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nhan JD, Turner CD, Anderson SM, Yen C-A, Dalton HM, Cheesman HK, Ruter DL, Uma Naresh N, Haynes CM, Soukas AA, Pukkila-Worley R, Curran SP (2019) Redirection of SKN-1 abates the negative metabolic outcomes of a perceived pathogen infection. Proc Natl Acad Sci U S A 116:22322–22330. https://doi.org/10.1073/pnas.1909666116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nigon VM, Félix MA (2017) History of research on C. elegans and other free-living nematodes as model organisms. WormBook 2017:1–84. https://doi.org/10.1895/wormbook.1.181.1

    Article  PubMed  Google Scholar 

  45. Noval Rivas M, Burton OT, Oettgen HC, Chatila T (2016) IL-4 production by group 2 innate lymphoid cells promotes food allergy by blocking regulatory T-cell function. J Allergy Clin Immunol 138(801-811):e809. https://doi.org/10.1016/j.jaci.2016.02.030

    Article  CAS  Google Scholar 

  46. Papp D, Csermely P, Soti C (2012) A role for SKN-1/Nrf in pathogen resistance and immunosenescence in Caenorhabditis elegans. PLoS Pathog 8(4):e1002673. https://doi.org/10.1371/journal.ppat.1002673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Park HH, Hwang W, Ham S, Kim E, Altintas O, Park S, Son HG, Lee Y, Lee D, Heo WD, Lee SV (2021) A PTEN variant uncouples longevity from impaired fitness in Caenorhabditis elegans with reduced insulin/IGF-1 signaling. Nat Commun 12(1):5631. https://doi.org/10.1038/s41467-021-25920-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rajan M, Anderson CP, Rindler PM, Romney SJ, Ferreira dos Santos MC, Gertz J, Leibold EA (2019) NHR-14 loss of function couples intestinal iron uptake with innate immunity in C. elegans through PQM-1 signaling. eLife 8:e44674. https://doi.org/10.7554/eLife.44674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sahiner UM, Layhadi JA, Golebski K, Istvan Komlosi Z, Peng Y, Sekerel B, Durham SR, Brough H, Morita H, Akdis M, Turner P, Nadeau K, Spits H, Akdis C, Shamji MH (2021) Innate lymphoid cells: The missing part of a puzzle in food allergy. Allergy 76:2002–2016. https://doi.org/10.1111/all.14776

    Article  CAS  PubMed  Google Scholar 

  50. Sakamoto K, Iwasaki K, Sugiyama H, Tsuji Y, Omary MB (2009) Role of the Tumor suppressor PTEN in antioxidant responsive element-mediated transcription and associated histone modifications. Mol Biol Cell 20:1606–1617. https://doi.org/10.1091/mbc.e08-07-0762

    Article  PubMed  PubMed Central  Google Scholar 

  51. Salminen A, Huuskonen J, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T (2008) Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflamm-aging. Ageing Res Rev 7:83–105. https://doi.org/10.1016/j.arr.2007.09.002

    Article  CAS  PubMed  Google Scholar 

  52. Sasakura H, Moribe H, Nakano M, Ikemoto K, Takeuchi K, Mori I (2017) Lifespan extension by peroxidase and dual oxidase-mediated ROS signaling through pyrroloquinoline quinone in C. elegans. J Cell Sci 130:2631–2643. https://doi.org/10.1242/jcs.202119

    Article  CAS  PubMed  Google Scholar 

  53. Shao LW, Peng Q, Dong M, Gao K, Li Y, Li Y, Li CY, Liu Y (2020) Histone deacetylase HDA-1 modulates mitochondrial stress response and longevity. Nat Commun 11(1):4639. https://doi.org/10.1038/s41467-020-18501-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shi J, Wang Y, Jiang F, Liu Y, Xu YJ (2022) The effect of krill oil on longevity and locomotion: A pilot study. Mol Omics 18:206–213. https://doi.org/10.1039/d1mo00373a

    Article  CAS  PubMed  Google Scholar 

  55. Shi Q, Wang W, Wu Y, Chen H, Tong P, Gao J (2022) Pasteurization induced protein interaction decreased the potential allergenicity of ovalbumin and ovomucoid in egg white. J Sci Food Agric 102:6835–6847. https://doi.org/10.1002/jsfa.12045

    Article  CAS  PubMed  Google Scholar 

  56. Somuah-Asante S, Sakamoto K (2022) Stress buffering and longevity effects of amber extract on Caenorhabditis elegans (C. elegans). Molecules 27(12):3858. https://doi.org/10.3390/molecules27123858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Song S, Han Y, Zhang Y, Ma H, Zhang L, Huo J, Wang P, Liang M, Gao M (2019) Protective role of citric acid against oxidative stress induced by heavy metals in Caenorhabditis elegans. Environ Sci Pollut Res Int 26:36820–36831. https://doi.org/10.1007/s11356-019-06853-w

    Article  CAS  PubMed  Google Scholar 

  58. Tan M-W, Block DHS, Twumasi-Boateng K, Kang HS, Carlisle JA, Hanganu A, Lai TY-J, Shapira M (2015) The developmental intestinal regulator ELT-2 controls p38-dependent immune responses in adult C. elegans. PLoS Genet 11(5):e1005265. https://doi.org/10.1371/journal.pgen.1005265

    Article  CAS  Google Scholar 

  59. Tang H, Pang S (2016) Proline catabolism modulates innate immunity in Caenorhabditis elegans. Cell Rep 17:2837–2844. https://doi.org/10.1016/j.celrep.2016.11.038

    Article  CAS  PubMed  Google Scholar 

  60. Troemel ER, Chu SW, Reinke V, Lee SS, Ausubel FM, Kim DH (2006) p38 MAPK regulates expression of immune response genes and contributes to longevity in C. elegans. PLoS Genet 2(11):e183. https://doi.org/10.1371/journal.pgen.0020183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Vigneshkumar B, Radhakrishnan S, Balamurugan K (2014) Analysis of Pseudomonas aeruginosa PAO1 lipid a changes during the interaction with model organism, Caenorhabditis elegans. Lipids 49:555–575. https://doi.org/10.1007/s11745-014-3898-3

    Article  CAS  PubMed  Google Scholar 

  62. Wang J, Liu X, Hang S, Cao C, He Y, Sun X, Zheng R, Yuan J (2022) Onion vinegar quality evaluation and its alleviate oxidative stress mechanism in Caenorhabditis elegans via SKN-1. Plant Foods Hum Nutr 77:206–211. https://doi.org/10.1007/s11130-022-00959-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang Q, Zhu Y, Song B, Fu R, Zhou Y (2022) The in vivo toxicity assessments of water-dispersed fluorescent silicon nanoparticles in Caenorhabditis elegans. Int J Environ Res Public Health 19(7):4101. https://doi.org/10.3390/ijerph19074101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wong D, Bazopoulou D, Pujol N, Tavernarakis N, Ewbank JJ (2007) Genome-wide investigation reveals pathogen-specific and shared signatures in the response of Caenorhabditis elegans to infection. Genome Biol 8:1–18. https://doi.org/10.1186/gb-2007-8-9-r194

    Article  CAS  Google Scholar 

  65. Xiao X, Zhou Y, Tan C, Bai J, Zhu Y, Zhang J, Zhou X, Zhao Y (2021) Barley beta-glucan resist oxidative stress of Caenorhabditis elegans via daf-2/daf-16 pathway. Int J Biol Macromol 193:1021–1031. https://doi.org/10.1016/j.ijbiomac.2021.11.067

    Article  CAS  PubMed  Google Scholar 

  66. Yu W, Freeland DMH, Nadeau KC (2016) Food allergy: immune mechanisms, diagnosis and immunotherapy. Nat Rev Immunol 16:751–765. https://doi.org/10.1038/nri.2016.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zecic A, Braeckman BP (2020) DAF-16/FoxO in Caenorhabditis elegans and its role in metabolic remodeling. Cells 9(1):109. https://doi.org/10.3390/cells9010109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zheng SQ, Ding AJ, Li GP, Wu GS, Luo HR (2013) Drug absorption efficiency in Caenorhbditis elegans delivered by different methods. PLoS One 8(2):e56877. https://doi.org/10.1371/journal.pone.0056877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhou X, Guo W, Yin H, Chen J, Ma L, Yang Q, Zhao Y, Li S, Liu W, Li H (2021) Whole exome sequencing study in a family with type 2 diabetes mellitus. Int J Gen Med 14:8217–8229. https://doi.org/10.2147/IJGM.S335090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhu J, Jia Y, Wang C, Zhou W, Shu Y, Zhang K, Zeng X, Guo R (2023) Lonicera japonica polysaccharides improve longevity and fitness of Caenorhabditis elegans by activating DAF-16. Int J Biol Macromol 229:81–91. https://doi.org/10.1016/j.ijbiomac.2022.12.289

    Article  CAS  PubMed  Google Scholar 

  71. Zou CG, Tu Q, Niu J, Ji XL, Zhang KQ (2013) The DAF-16/FOXO transcription factor functions as a regulator of epidermal innate immunity. PLoS Pathog 9(10):e1003660. https://doi.org/10.1371/journal.ppat.1003660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 32072339). The authors also thank Guangxi Key Laboratory of Marine Drugs for providing Pseudomonas aeruginosa strains and the Caenorhabditis Genetics Center (CGC, University of Minnesota, USA) for providing the worm strains.

Funding

This work was supported by the National Natural Science Foundation of China (No. 32072339).

Author information

Authors and Affiliations

Authors

Contributions

P T designed the study. HB P, ZY L, KX Y, and YQ L conducted experiments and analyzed the data. Y W developed the methodology. All authors participated in writing the original draft. P T, ZH W, and JY G critically revised the manuscript. HB C supervised the research. All authors have read and approved the final manuscript. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding authors

Correspondence to Ping Tong or Jinyan Gao.

Ethics declarations

Ethics approval and consent to participate

Our research does not involve vertebrate animal or human experiments, so ethics approval is not applicable.

Competing interests

The authors declare no competing interests.

Consent to publish

Human experiments are not involved in this manuscript.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

1. OVA enhanced the innate immune responses of C. elegans.

2. Sustaining OVA treatment brought health and life-promoting benefits to C. elegans.

3. Insulin/IGF-1 signaling is involved in the innate immune responses of C. elegans with OVA treatment.

4. OVA differently regulates DAF-16 and SKN-1 nuclear translocation for enhancing immune responses and improving health status in C. elegans.

Supplementary information

ESM 1

(PDF 621 kb)

ESM 2

(XLSX 200 kb)

ESM 3

(XLSX 223 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, H., Lin, Z., Yao, K. et al. Ovalbumin promotes innate immune response of Caenorhabditis elegans through DAF-16 and SKN-1 pathways in insulin/IGF-1 signaling. J Physiol Biochem (2024). https://doi.org/10.1007/s13105-024-01021-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13105-024-01021-2

Keywords

Navigation