Skip to main content

Advertisement

Log in

miR-455-5p regulates atrial fibrillation by targeting suppressor of cytokines signaling 3

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Atrial fibrillation (AF) is a condition that heart beats quaveringly or irregularly, which causes blood clots, heart failure, stroke, and other heart-related complications. Therefore, early diagnosis and timely preventions are necessary for AF treatment. Compelling evidence indicated that microRNAs (miRNAs) become emerging biomarkers of AF; thus, we aimed to investigate the possibility of miR-455-5p as an AF marker to provide a new strategy for early diagnosis of AF. A minipump containing angiotensin II was implanted into mice to induce AF, and adeno-associated virus (AAV) carrying anti-miR-negative control (NC) or anti-miR-455-5p was injected into the pericardial space of mice respectively. Next, myocytes isolated from wild-type newborn mice were stimulated with angiotensin II and anti-miR-NC or anti-miR-455-5p mimic. The results showed that the expression of miR-455-5p was positively correlated with the severity of AF, and miR-455-5p mimic accelerated the progression of AF by directly binding to its target gene suppressor of cytokines signaling 3 (SOCS3), leading to the activation of signal transducer and activator of transcription 3 (STAT3) signaling pathway. On the contrary, inhibition of miR-455-5p expression effectively ameliorated AF. In conclusion, miR-455-5p might serve as a biomarker of AF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Acunzo M, Romano G, Wernicke D, Croce CM (2015) MicroRNA and cancer--a brief overview. Adv Biol Regul 57:1–9. https://doi.org/10.1016/j.jbior.2014.09.013

    Article  CAS  PubMed  Google Scholar 

  2. Cao W, Shi P, Ge JJ (2017) miR-21 enhances cardiac fibrotic remodeling and fibroblast proliferation via CADM1/STAT3 pathway. BMC Cardiovasc Disord 17:88. https://doi.org/10.1186/s12872-017-0520-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chang SH, Yeh YH, Lee JL, Hsu YJ, Kuo CT, Chen WJ (2017) Transforming growth factor-β-mediated CD44/STAT3 signaling contributes to the development of atrial fibrosis and fibrillation. Basic Res Cardiol 112:58. https://doi.org/10.1007/s00395-017-0647-9

    Article  CAS  PubMed  Google Scholar 

  4. Chen P, Miao Y, Yan P, Wang XJ, Jiang C, Lei Y (2019) MiR-455-5p ameliorates HG-induced apoptosis, oxidative stress and inflammatory via targeting SOCS3 in retinal pigment epithelial cells. J Cell Physiol 234:21915–21924. https://doi.org/10.1002/jcp.28755

    Article  CAS  PubMed  Google Scholar 

  5. Dong Q, Li S, Wang W, Han L, Xia Z, Wu Y, Tang Y, Li J, Cheng X (2019) FGF23 regulates atrial fibrosis in atrial fibrillation by mediating the STAT3 and SMAD3 pathways. J Cell Physiol 234:19502–19510. https://doi.org/10.1002/jcp.28548

    Article  CAS  PubMed  Google Scholar 

  6. Hathaway QA, Pinti MV, Durr AJ, Waris S, Shepherd DL, Hollander JM (2018) Regulating microRNA expression: at the heart of diabetes mellitus and the mitochondrion. Am J Physiol Heart Circ Physiol 314:H293–h310. https://doi.org/10.1152/ajpheart.00520.2017

    Article  CAS  PubMed  Google Scholar 

  7. Huang Z, Chen XJ, Qian C, Dong Q, Ding D, Wu QF, Li J, Wang HF, Li WH, Xie Q, Cheng X, Zhao N, Du YM, Liao YH (2016) Signal transducer and activator of transcription 3/MicroRNA-21 feedback loop contributes to atrial fibrillation by promoting atrial fibrosis in a rat sterile pericarditis model. Circ Arrhythm Electrophysiol 9:e003396. https://doi.org/10.1161/circep.115.003396

    Article  PubMed  PubMed Central  Google Scholar 

  8. Huang ZW, Tian LH, Yang B, Guo RM (2017) Long noncoding RNA H19 acts as a competing endogenous RNA to mediate CTGF expression by sponging miR-455 in cardiac fibrosis. DNA Cell Biol 36:759–766. https://doi.org/10.1089/dna.2017.3799

    Article  CAS  PubMed  Google Scholar 

  9. Jiang S, Guo C, Zhang W, Che W, Zhang J, Zhuang S, Wang Y, Zhang Y, Liu B (2019) The integrative regulatory network of circRNA, microRNA, and mRNA in atrial fibrillation. Front Genet 10:526. https://doi.org/10.3389/fgene.2019.00526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kallistratos MS, Poulimenos LE, Manolis AJ (2018) Atrial fibrillation and arterial hypertension. Pharmacol Res 128:322–326. https://doi.org/10.1016/j.phrs.2017.10.007

    Article  CAS  PubMed  Google Scholar 

  11. Komal S, Yin JJ, Wang SH, Huang CZ, Tao HL, Dong JZ, Han SN, Zhang LR (2019) MicroRNAs: emerging biomarkers for atrial fibrillation. J Cardiol 74:475–482. https://doi.org/10.1016/j.jjcc.2019.05.018

    Article  PubMed  Google Scholar 

  12. Li YJ, Ping C, Tang J, Zhang W (2016) MicroRNA-455 suppresses non-small cell lung cancer through targeting ZEB1. Cell Biol Int 40:621–628. https://doi.org/10.1002/cbin.10584

    Article  CAS  PubMed  Google Scholar 

  13. Li Z, Meng Q, Pan A, Wu X, Cui J, Wang Y, Li L (2017) MicroRNA-455-3p promotes invasion and migration in triple negative breast cancer by targeting tumor suppressor EI24. Oncotarget 8:19455–19466. https://doi.org/10.18632/oncotarget.14307

    Article  PubMed  Google Scholar 

  14. Ling TY, Wang XL, Chai Q, Lau TW, Koestler CM, Park SJ, Daly RC, Greason KL, Jen J, Wu LQ, Shen WF, Shen WK, Cha YM, Lee HC (2013) Regulation of the SK3 channel by microRNA-499--potential role in atrial fibrillation. Heart Rhythm 10:1001–1009. https://doi.org/10.1016/j.hrthm.2013.03.005

    Article  PubMed  PubMed Central  Google Scholar 

  15. Liu Z, Luo H, Zhang L, Huang Y, Liu B, Ma K, Feng J, Xie J, Zheng J, Hu J, Zhan S, Zhu Y, Xu Q, Kong W, Wang X (2012) Hyperhomocysteinemia exaggerates adventitial inflammation and angiotensin II-induced abdominal aortic aneurysm in mice. Circ Res 111:1261–1273. https://doi.org/10.1161/circresaha.112.270520

    Article  CAS  PubMed  Google Scholar 

  16. Lu Y, Zhang Y, Wang N, Pan Z, Gao X, Zhang F, Zhang Y, Shan H, Luo X, Bai Y, Sun L, Song W, Xu C, Wang Z, Yang B (2010) MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation. Circulation 122:2378–2387. https://doi.org/10.1161/circulationaha.110.958967

    Article  CAS  PubMed  Google Scholar 

  17. Rottenberg ME, Carow B (2014) SOCS3 and STAT3, major controllers of the outcome of infection with Mycobacterium tuberculosis. Semin Immunol 26:518–532. https://doi.org/10.1016/j.smim.2014.10.004

    Article  CAS  PubMed  Google Scholar 

  18. Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16:203–222. https://doi.org/10.1038/nrd.2016.246

    Article  CAS  PubMed  Google Scholar 

  19. Shen C, Kong B, Liu Y, Xiong L, Shuai W, Wang G, Quan D, Huang H (2018) YY1-induced upregulation of lncRNA KCNQ1OT1 regulates angiotensin II-induced atrial fibrillation by modulating miR-384b/CACNA1C axis. Biochem Biophys Res Commun 505:134–140. https://doi.org/10.1016/j.bbrc.2018.09.064

    Article  CAS  PubMed  Google Scholar 

  20. Tsai CT, Lai LP, Kuo KT, Hwang JJ, Hsieh CS, Hsu KL, Tseng CD, Tseng YZ, Chiang FT, Lin JL (2008) Angiotensin II activates signal transducer and activators of transcription 3 via Rac1 in atrial myocytes and fibroblasts: implication for the therapeutic effect of statin in atrial structural remodeling. Circulation 117:344–355. https://doi.org/10.1161/circulationaha.107.695346

    Article  CAS  PubMed  Google Scholar 

  21. Tu Z, Xu M, Zhang J, Feng Y, Hao Z, Tu C, Liu Y (2019) Pentagalloylglucose inhibits the replication of rabies virus via mediation of the miR-455/SOCS3/STAT3/IL-6 pathway. J Virol 93. https://doi.org/10.1128/jvi.00539-19

  22. Wang A, Green JB, Halperin JL, Piccini JP Sr (2019) Atrial fibrillation and diabetes mellitus: JACC review topic of the week. J Am Coll Cardiol 74:1107–1115. https://doi.org/10.1016/j.jacc.2019.07.020

    Article  PubMed  Google Scholar 

  23. Wang J, Wang Y, Sun D, Bu J, Ren F, Liu B, Zhang S, Xu Z, Pang S, Xu S (2017) miR-455-5p promotes cell growth and invasion by targeting SOCO3 in non-small cell lung cancer. Oncotarget 8:114956–114965. https://doi.org/10.18632/oncotarget.22565

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wang Y, Cai H, Li H, Gao Z, Song K (2018) Atrial overexpression of microRNA-27b attenuates angiotensin II-induced atrial fibrosis and fibrillation by targeting ALK5. Hum Cell 31:251–260. https://doi.org/10.1007/s13577-018-0208-z

    Article  CAS  PubMed  Google Scholar 

  25. Wu C, Dong S, Li Y (2015) Effects of miRNA-455 on cardiac hypertrophy induced by pressure overload. Int J Mol Med 35:893–900. https://doi.org/10.3892/ijmm.2015.2105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xue XD, Huang JH, Wang HS (2015) Angiotensin II activates signal transducers and activators of transcription 3 via Rac1 in the atrial tissue in permanent atrial fibrillation patients with rheumatic heart disease. Cell Biochem Biophys 71:205–213. https://doi.org/10.1007/s12013-014-0186-z

    Article  CAS  PubMed  Google Scholar 

  27. Yu B, Liu Z, Fu Y, Wang Y, Zhang L, Cai Z, Yu F, Wang X, Zhou J, Kong W (2017) CYLD deubiquitinates nicotinamide adenine dinucleotide phosphate oxidase 4 contributing to adventitial remodeling. Arterioscler Thromb Vasc Biol 37:1698–1709. https://doi.org/10.1161/atvbaha.117.309859

    Article  CAS  PubMed  Google Scholar 

  28. Zheng L, Jia X, Zhang C, Wang D, Cao Z, Wang J, Du X (2015) Angiotensin II in atrial structural remodeling: the role of Ang II/JAK/STAT3 signaling pathway. Am J Transl Res 7:1021–1031

    PubMed  PubMed Central  Google Scholar 

  29. Zheng LY, Zhang MH, Xue JH, Li Y, Nan Y, Li MJ, Wang J, Du XP (2014) Effect of angiotensin II on STAT3 mediated atrial structural remodeling. Eur Rev Med Pharmacol Sci 18:2365–2377

    PubMed  Google Scholar 

  30. Zhou C, Pei J, Zhao X, Gu S, Wu Y, Wan S, Che R, Han Z, Hua X (2020) Inhibition of microRNA-874 ameliorates cardiomyocyte apoptosis and improves cardiac function in the peripartum cardiomyopathy of Gαq transgenic mice. STEMedicine 2:e75. https://doi.org/10.37175/stemedicine.v2i5.75

    Article  Google Scholar 

  31. Zhou SS, Jin JP, Wang JQ, Zhang ZG, Freedman JH, Zheng Y, Cai L (2018) miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin 39:1073–1084. https://doi.org/10.1038/aps.2018.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the departmental funding.

Author information

Authors and Affiliations

Authors

Contributions

The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Tao Liu.

Ethics declarations

Informed consent

Written consent was collected from each participant.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Points

1. The expression of miR-455-5p was positively correlated with the severity of AF.

2. Inhibition of miR-455-5p expression effectively ameliorated AF.

3. miR-455-5p might serve as a biomarker of AF.

Supplementary Information

ESM 1

(DOCX 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Qi, N., Wang, S. et al. miR-455-5p regulates atrial fibrillation by targeting suppressor of cytokines signaling 3. J Physiol Biochem 77, 481–490 (2021). https://doi.org/10.1007/s13105-021-00808-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-021-00808-x

Keywords

Navigation