Skip to main content

Advertisement

Log in

Small G—protein RhoA is a potential inhibitor of cardiac fast sodium current

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Small G-proteins of Rho family modulate the activity of several classes of ion channels, including K+ channels Kv1.2, Kir2.1, and ERG; Ca2+ channels; and epithelial Na+ channels. The present study was aimed to check the RhoA potential regulatory effects on Na+ current (INa) transferred by Na+ channel cardiac isoform NaV1.5 in heterologous expression system and in native rat cardiomyocytes. Whole-cell patch-clamp experiments showed that coexpression of NaV1.5 with the wild-type RhoA in CHO-K1 cell line caused 2.7-fold decrease of INa density with minimal influence on steady-state activation and inactivation. This effect was reproduced by the coexpression with a constitutively active RhoA, but not with a dominant negative RhoA. In isolated ventricular rat cardiomyocytes, a 5-h incubation with the RhoA activator narciclasine (5 × 10−6 M) reduced the maximal INa density by 38.8%. The RhoA-selective inhibitor rhosin (10−5 M) increased the maximal INa density by 25.3%. Experiments with sharp microelectrode recordings in isolated right ventricular wall preparations showed that 5 × 10−6 M narciclasine induced a significant reduction of action potential upstroke velocity after 2 h of incubation. Thus, RhoA might be considered as a potential negative regulator of sodium channels cardiac isoform NaV1.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adam O, Lavall D, Theobald K, Hohl M, Grube M, Ameling S, Sussman MA, Rosenkranz S, Kroemer HK, Schäfers HJ, Böhm M, Laufs U (2010) Rac1-induced connective tissue growth factor regulates connexin 43 and N-cadherin expression in atrial fibrillation. J Am Coll Cardiol 55(5):469–480. https://doi.org/10.1016/j.jacc.2009.08.064

    Article  CAS  PubMed  Google Scholar 

  2. Akbar H, Duan X, Saleem S, Davis AK, Zheng Y (2016) RhoA and Rac1 GTPases differentially regulate agonist-receptor mediated reactive oxygen species generation in platelets. PLoS One 11(9):e0163227. https://doi.org/10.1371/journal.pone.0163227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Andrieu G, Quaranta M, Leprince C, Cuvillier O, Hatzoglou A (2014) Gem GTPase acts upstream Gmip/RhoA to regulate cortical actin remodeling and spindle positioning during early mitosis. Carcinogenesis. 35(11):2503–2511. https://doi.org/10.1093/carcin/bgu185

    Article  CAS  PubMed  Google Scholar 

  4. Anumonwo JMB, Lopatin AN (2010) Cardiac strong inward rectifier potassium channels. J Mol Cell Cardiol 48(1):45–54. https://doi.org/10.1016/j.yjmcc.2009.08.013

    Article  CAS  PubMed  Google Scholar 

  5. Aoki H, Izumo S, Sadoshima J (1998) Angiotensin II activates RhoA in cardiac myocytes: a critical role of RhoA in angiotensin II-induced premyofibril formation. Circ Res 82(6):666–676. https://doi.org/10.1161/01.res.82.6.666

    Article  CAS  PubMed  Google Scholar 

  6. Boyer SB, Slesinger PA, Jones SVP (2009) Regulation of Kir2.1 channels by the Rho-GTPase, Rac1. J Cell Physiol 218(2):385–393. https://doi.org/10.1002/jcp.21610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cachero TG, Morielli AD, Peralta EG (1998) The small GTP-binding protein RhoA regulates a delayed rectifier potassium channel. Cell 93(6):1077–1085. https://doi.org/10.1016/S0092-8674(00)81212-X

    Article  CAS  PubMed  Google Scholar 

  8. Casini S, Tan HL, Demirayak I, Remme CA, Amin AS, Scicluna BP, Chatyan H, Ruijter JM, Bezzina CR, van Ginneken AC, Veldkamp MW (2010) Tubulin polymerization modifies cardiac sodium channel expression and gating. Cardiovasc Res 85(4):691–700. https://doi.org/10.1093/cvr/cvp352

    Article  CAS  PubMed  Google Scholar 

  9. De Boer TP, Houtman MJC, Compier M, Van Der Heyden MAG (2010) The mammalian K(IR)2.x inward rectifier ion channel family: expression pattern and pathophysiology. Acta Physiol 199:243–256. https://doi.org/10.1111/j.1748-1716.2010.02108.x

    Article  CAS  Google Scholar 

  10. Dulong C, Fang YJ, Gest C, Zhou MH, Patte-Mensah C, Mensah-Nyagan AG, Vannier JP, Lu H, Soria C, Cazin L, Mei YA, Varin R, Li H (2014) The small GTPase RhoA regulates the expression and function of the sodium channel Nav1.5 in breast cancer cells. Int J Oncol 44(2):539–547. https://doi.org/10.3892/ijo.2013.2214

    Article  CAS  PubMed  Google Scholar 

  11. Hallaq H, Yang Z, Viswanathan PC, Fukuda K, Shen W, Wang DW, Wells KS, Zhou J, Yi J, Murray KT (2006) Quantitation of protein kinase A-mediated trafficking of cardiac sodium channels in living cells. Cardiovasc Res 72(2):250–261. https://doi.org/10.1016/j.cardiores.2006.08.007

    Article  CAS  PubMed  Google Scholar 

  12. Haverinen J, Vornanen M (2004) Temperature acclimation modifies Na+ current in fish cardiac myocytes. J Exp Biol 207:2823–2833. https://doi.org/10.1242/jeb.01103

    Article  CAS  PubMed  Google Scholar 

  13. Jones SVP (2003) Role of the small GTPase Rho in modulation of the inwardly rectifying potassium channel Kir2.1. Mol Pharmacol 64(4):987–993. https://doi.org/10.1124/mol.64.4.987

    Article  CAS  PubMed  Google Scholar 

  14. Lefranc F, Sauvage S, Goietsenoven GV, Megalizzi V, Lamoral-Theyes D, Debeir O, Spiegl-Kreinecker S, Berger W, Mathieu V, Decaestecker C, Kiss R (2009) Narciclasine, a plant growth modulator, activates Rho and stress fibers in glioblastoma cells. Mol Cancer Ther 8(7):1739–1750. https://doi.org/10.1158/1535-7163.MCT-08-0932

    Article  CAS  PubMed  Google Scholar 

  15. Marsman RF, Bezzina CR, Freiberg F, Verkerk AO, Adriaens ME, Podliesna S, Chen C, Purfürst B, Spallek B, Koopmann TT, Baczko I, Dos Remedios CG, George AL Jr, Bishopric NH, Lodder EM, de Bakker JM, Fischer R, Coronel R, Wilde AA, Gotthardt M, Remme CA (2014) Coxsackie and adenovirus receptor is a modifier of cardiac conduction and arrhythmia vulnerability in the setting of myocardial ischemia. J Am Coll Cardiol 63(6):549–559. https://doi.org/10.1016/j.jacc.2013.10.062

    Article  CAS  PubMed  Google Scholar 

  16. Matamoros M, Pérez-Hernández M, Guerrero-Serna G, Amoros I, Barana A, Nunez M, Ponce-Balbuena D, Sacristán S, Gómez R, Tamargo J, Caballero R, Jalife J (2016) Nav1.5 N-terminal domain binding to α1-syntrophin increases membrane density of human Kir2.1, Kir2.2 and Nav1.5 channels. Cardiovasc Res 110:279–290. https://doi.org/10.1093/cvr/cvw009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Milstein ML, Musa H, Balbuena DP, Anumonwo JMB, Auerbach DS, Furspan PB, Hou L, Hu B, Schumacher SM, Vaidyanathan R (2012) Dynamic reciprocity of sodium and potassium channel expression in a macromolecular complex controls cardiac excitability and arrhythmia. Proc Natl Acad Sci 109:E2134–E2143. https://doi.org/10.1073/pnas.1109370109

    Article  PubMed  Google Scholar 

  18. Motlagh D, Alden KJ, Russell B, García J (2002) Sodium current modulation by a tubulin/GTP coupled process in rat neonatal cardiac myocytes. J Physiol 540(1):93–103. https://doi.org/10.1113/jphysiol.2001.013474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Murray KT, Hu N, Daw JR, Shin HG, Watson MT, Mashburn AB, George AL Jr (1997) Functional effects of protein kinase C activation on the human cardiac Na+ channel. Circ Res 80(3):370–376. https://doi.org/10.1161/01.RES.80.3.370

    Article  CAS  PubMed  Google Scholar 

  20. Pérez-Hernández M, Matamoros M, Alfayate S, Nieto-Marín P, Utrilla R, Tinaquero D, de Andrés R, Crespo T, Ponce-Balbuena D, Willis BC, Jiménez-Vazquez EN, Guerrero-Serna G, da Rocha AM, Campbell K, Herron TJ, Díez-Guerra FJ, Tamargo J, Jalife J, Caballero R, Delpón E (2018) Brugada syndrome trafficking–defective Nav1.5 channels can trap cardiac Kir2.1/2.2 channels. JCI. Insight 3(18):e96291. https://doi.org/10.1172/jci.insight.96291

    Article  Google Scholar 

  21. Pochynyuk O, Medina J, Gamper N, Genth H, Stockand JD, Staruschenko A (2006) Rapid translocation and insertion of the epithelial Na+ channel in response to RhoA signaling. J Biol Chem 281(36):26520–26527. https://doi.org/10.1074/jbc.M603716200

    Article  CAS  PubMed  Google Scholar 

  22. Ponce-Balbuena D, Guerrero-Serna G, Valdivia CR, Caballero R, Diez-Guerra FJ, Jiménez-Vázquez EN, Ramírez RJ, Monteiro da Rocha A, Herron TJ, Campbell KF, Willis BC, Alvarado FJ, Zarzoso M, Kaur K, Pérez-Hernández M, Matamoros M, Valdivia HH, Delpón E, Jalife J (2018) Cardiac Kir2.1 and NaV1.5 channels traffic together to the sarcolemma to control excitability. Circ Res 122:1501–1516. https://doi.org/10.1161/CIRCRESAHA.117.311872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rossignol TM, Jones SVP (2006) Regulation of a family of inwardly rectifying potassium channels (Kir2) by the m1 muscarinic receptor and the small GTPase Rho. Pflugers Arch - Eur J Physiol 452(2):164–174. https://doi.org/10.1007/s00424-005-0014-9

    Article  CAS  Google Scholar 

  24. Sah VP, Minamisawa S, Tam SP, Wu TH, Dorn GW 2nd, Ross J Jr, Chien KR, Brown JH (1999) Cardiac-specific overexpression of RhoA results in sinus and atrioventricular nodal dysfunction and contractile failure. J Clin Invest 103(12):1627–1634. https://doi.org/10.1172/JCI6842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Savio-Galimberti E, Argenziano M, Antzelevitch C (2017) Cardiac arrhythmias related to sodium channel dysfunction. В: Handbook of Experimental Pharmacology. pp 331–354

  26. Shang LL, Pfahnl AE, Sanyal S, Jiao Z, Allen J, Banach K, Fahrenbach J, Weiss D, Taylor WR, Zafari AM, Dudley SC Jr (2007) Human heart failure is associated with abnormal C-terminal splicing variants in the cardiac sodium channel. Circ Res 101(11):1146–1154. https://doi.org/10.1161/CIRCRESAHA.107.152918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Storey NM, O’Bryan JP, Armstrong DL (2002) Rac and Rho mediate opposing hormonal regulation of the ether-A-go-go-related potassium channel. Curr Biol 12(1):27–33. https://doi.org/10.1016/S0960-9822(01)00625-X

    Article  CAS  PubMed  Google Scholar 

  28. Strassheim D, Gerasimovskaya E, Irwin D, Dempsey EC, Stenmark K, Karoor V (2019) RhoGTPase in vascular disease. Cells 8(6):E551. https://doi.org/10.3390/cells8060551

    Article  CAS  PubMed  Google Scholar 

  29. Sussman MA, Welch S, Walker A, Klevitsky R, Hewett TE, Price RL, Schaefer E, Yager K (2000) Altered focal adhesion regulation correlates with cardiomyopathy in mice expressing constitutively active rac1. J Clin Invest 105(7):875–886. https://doi.org/10.1172/JCI8497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Takai Y, Sasaki T, Matozaki T (2001) Small GTP-binding proteins. Physiol Rev 81(1):153–208. https://doi.org/10.1152/physrev.2001.81.1.153

    Article  CAS  PubMed  Google Scholar 

  31. Utrilla RG, Nieto-Marín P, Alfayate S, Tinaquero D, Matamoros M, Pérez-Hernández M, Sacristán S, Ondo L, de Andrés R, Díez-Guerra FJ, Tamargo J, Delpón E, Caballero R (2017) Kir2.1-Nav1.5 channel complexes are differently regulated than Kir2.1 and Nav1.5 channels alone. Front Physiol 8:903. https://doi.org/10.3389/fphys.2017.00903

    Article  PubMed  PubMed Central  Google Scholar 

  32. van Bemmelen MX, Rougier JS, Gavillet B et al (2004) Cardiac voltage-gated sodium channel Nav1.5 is regulated by Nedd4-2 mediated ubiquitination. Circ Res 95(3):284–291. https://doi.org/10.1161/01.RES.0000136816.05109.89

    Article  CAS  PubMed  Google Scholar 

  33. Veettil MV, Sharma-Walia N, Sadagopan S, Raghu H, Sivakumar R, Naranatt PP, Chandran B (2006) RhoA-GTPase facilitates entry of Kaposi's sarcoma-associated herpesvirus into adherent target cells in a Src-dependent manner. J Virol 80(23):11432–11446. https://doi.org/10.1128/JVI.01342-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wei L, Imanaka-Yoshida K, Wang L, Zhan S, Schneider MD, DeMayo FJ, Schwartz RJ (2002) Inhibition of Rho family GTPases by Rho GDP dissociation inhibitor disrupts cardiac morphogenesis and inhibits cardiomyocyte proliferation. Development 129(7):1705–1714

    CAS  PubMed  Google Scholar 

  35. Wennerberg K (2005) The Ras superfamily at a glance. J Cell Sci 118(5):843–846. https://doi.org/10.1242/jcs.01660

    Article  CAS  PubMed  Google Scholar 

  36. Yatani A, Irie K, Otani T, Abdellatif M, Wei L (2005) RhoA GTPase regulates L-type Ca 2+ currents in cardiac myocytes. Am J Physiol Circ Physiol 288(2):H650–H659. https://doi.org/10.1152/ajpheart.00268.2004

    Article  CAS  Google Scholar 

  37. Yoon J-Y, Ho W-K, Kim S-T, Cho H (2009) Constitutive CaMKII activity regulates Na+ channel in rat ventricular myocytes. J Mol Cell Cardiol 47(4):475–484. https://doi.org/10.1016/j.yjmcc.2009.06.020

    Article  CAS  PubMed  Google Scholar 

  38. Young KA, Caldwell JH (2005) Modulation of skeletal and cardiac voltage-gated sodium channels by calmodulin. J Physiol 565(2):349–370. https://doi.org/10.1113/jphysiol.2004.081422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zimmer T, Haufe V, Blechschmidt S (2014) Voltage-gated sodium channels in the mammalian heart. Glob Cardiol Sci Pract 2014(4):449–463. https://doi.org/10.5339/gcsp.2014.58

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research [18-315-20049 to D.V.A.].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis V. Abramochkin.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Research involving human participants and/or animals

The investigation complies with the ARRIVE guidelines and conforms to the guidelines from Directive 2010/63/EU of the European Parliament on the protection of animals used for scientific purposes and was approved by the Bioethical Committee of Moscow State University.

Informed consent

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

• Coexpression with the RhoA inhibits Na+ current (INa) in heterologous expression system

• The RhoA activator decreases INa, while its inhibitor increases INa in rat cardiomyocytes

• In rat ventricular myocardium, the RhoA activator slows down action potential upstroke

• Thus, the RhoA might be considered as a new potential regulator of cardiac Na+ channels

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abramochkin, D.V., Filatova, T.S., Pustovit, K.B. et al. Small G—protein RhoA is a potential inhibitor of cardiac fast sodium current. J Physiol Biochem 77, 13–23 (2021). https://doi.org/10.1007/s13105-020-00774-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-020-00774-w

Keywords

Navigation