Skip to main content

Advertisement

Log in

Tetrodotoxin-sensitive α-subunits of voltage-gated sodium channels are relevant for inhibition of cardiac sodium currents by local anesthetics

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The sodium channel α-subunit (Nav) Nav1.5 is regarded as the most prevalent cardiac sodium channel required for generation of action potentials in cardiomyocytes. Accordingly, Nav1.5 seems to be the main target molecule for local anesthetic (LA)-induced cardiotoxicity. However, recent reports demonstrated functional expression of several “neuronal” Nav’s in cardiomyocytes being involved in cardiac contractility and rhythmogenesis. In this study, we examined the relevance of neuronal tetrodotoxin (TTX)-sensitive Nav’s for inhibition of cardiac sodium channels by the cardiotoxic LAs ropivacaine and bupivacaine. Effects of LAs on recombinant Nav1.2, 1.3, 1.4, and 1.5 expressed in human embryonic kidney cell line 293 (HEK-293) cells, and on sodium currents in murine, cardiomyocytes were investigated by whole-cell patch clamp recordings. Expression analyses were performed by reverse transcription PCR (RT-PCR). Cultured cardiomyocytes from neonatal mice express messenger RNA (mRNA) for Nav1.2, 1.3, 1.5, 1.8, and 1.9 and generate TTX-sensitive sodium currents. Tonic and use-dependent block of sodium currents in cardiomyocytes by ropivacaine and bupivacaine were enhanced by 200 nM TTX. Inhibition of recombinant Nav1.5 channels was similar to that of TTX-resistant currents in cardiomyocytes but stronger as compared to inhibition of total sodium current in cardiomyocytes. Recombinant Nav1.2, 1.3, 1.4, and 1.5 channels displayed significant differences in regard to use-dependent block by ropivacaine. Finally, bupivacaine blocked sodium currents in cardiomyocytes as well as recombinant Nav1.5 currents significantly stronger in comparison to ropivacaine. Our data demonstrate for the first time that cardiac TTX-sensitive sodium channels are relevant for inhibition of cardiac sodium currents by LAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arlock P (1988) Actions of three local anaesthetics: lidocaine, bupivacaine and ropivacaine on Guinea pig papillary muscle sodium channels (vmax). Pharmacol Toxicol 63:96–104

    Article  CAS  PubMed  Google Scholar 

  • Baptista-Hon DT, Robertson FM, Robertson GB, Owen SJ, Rogers GW, Lydon EL, et al. (2014) Potent inhibition by ropivacaine of metastatic colon cancer SW620 cell invasion and NaV1.5 channel function. Bri J Anaest 113(Suppl 1):i39–i48.

    Article  CAS  Google Scholar 

  • Brau ME, Branitzki P, Olschewski A, Vogel W, Hempelmann G (2000) Block of neuronal tetrodotoxin-resistant Na + currents by stereoisomers of piperidine local anesthetics. Anesth Analg 91:1499–1505

    Article  CAS  PubMed  Google Scholar 

  • Burashnikov A, Di Diego JM, Zygmunt AC, Belardinelli L, Antzelevitch C (2008) Atrial-selective sodium channel block as a strategy for suppression of atrial fibrillation. Ann N Y Acad Sci 1123:105–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butterworth JF (2010) Models and mechanisms of local anesthetic cardiac toxicity: a review. Regional Anest Pain Med 35:167–176

    Article  Google Scholar 

  • Catterall WA, Goldin AL, Waxman SG, International Union of Pharmacology (2003) International Union Of Pharmacology. XXXIX. compendium of voltage-gated ion channels: sodium channels. Pharmacol Rev 55:575–578

    Article  CAS  PubMed  Google Scholar 

  • Chambers JC, Zhao J, Terracciano CM, Bezzina CR, Zhang W, Kaba R, et al. (2010) Genetic variation in SCN10A influences cardiac conduction. Nat Genet 42:149–152

    Article  CAS  PubMed  Google Scholar 

  • Cheng HW, Yang HT, Zhou JJ, Ji YH, Zhu HY (2010) Pharmacological modulation of brain Nav1.2 and cardiac Nav1.5 subtypes by the local anesthetic ropivacaine. Neurosci Bull 26:289–296

    Article  PubMed  Google Scholar 

  • Clarkson CW, Hondeghem LM (1985) Mechanism for bupivacaine depression of cardiac conduction: fast block of sodium channels during the action potential with slow recovery from block during diastole. Anesthesiology 62:396–405

    Article  CAS  PubMed  Google Scholar 

  • Facer P, Punjabi PP, Abrari A, Kaba RA, Severs NJ, Chambers J, et al. (2011) Localisation of SCN10A gene product Na(v)1.8 and novel pain-related ion channels in human heart. Int Heart J 52:146–152

    Article  PubMed  Google Scholar 

  • Feldman HS, Hartvig P, Wiklund L, Doucette AM, Antoni G, Gee A, et al. (1997) Regional distribution of 11C-labeled lidocaine, bupivacaine, and ropivacaine in the heart, lungs, and skeletal muscle of pigs studied with positron emission tomography. Biopharm Drug Dispos 18:151–164

    Article  CAS  PubMed  Google Scholar 

  • Groban L, Deal DD, Vernon JC, James RL, Butterworth J (2001) Cardiac resuscitation after incremental overdosage with lidocaine, bupivacaine, levobupivacaine, and ropivacaine in anesthetized dogs. Anesth Analg 92:37–43

    Article  CAS  PubMed  Google Scholar 

  • Hiller N, Mirtschink P, Merkel C, Knels L, Oertel R, Christ T, et al. (2013) Myocardial accumulation of bupivacaine and ropivacaine is associated with reversible effects on mitochondria and reduced myocardial function. Anesth Analg 116:83–92

    Article  CAS  PubMed  Google Scholar 

  • Huang YF, Pryor ME, Mather LE, Veering BT (1998) Cardiovascular and central nervous system effects of intravenous levobupivacaine and bupivacaine in sheep. Anesth Analg 86:797–804

    CAS  PubMed  Google Scholar 

  • Kaufmann SG, Westenbroek RE, Zechner C, Maass AH, Bischoff S, Muck J, et al. (2010) Functional protein expression of multiple sodium channel alpha- and beta-subunit isoforms in neonatal cardiomyocytes. J Mol Cell Cardiol 48:261–269

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann SG, Westenbroek RE, Maass AH, Lange V, Renner A, Wischmeyer E, et al. (2013) Distribution and function of sodium channel subtypes in human atrial myocardium. J Mol Cell Cardiol 61:133–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knudsen K, Beckman Suurkula M, Blomberg S, Sjovall J, Edvardsson N (1997) Central nervous and cardiovascular effects of i.v. infusions of ropivacaine, bupivacaine and placebo in volunteers. Br J Anaesth 78:507–514

    Article  CAS  PubMed  Google Scholar 

  • Leffler A, Reiprich A, Mohapatra DP, Nau C (2007) Use-dependent block by lidocaine but not amitriptyline is more pronounced in tetrodotoxin (TTX)-Resistant Nav1.8 than in TTX-Sensitive Na + channels. J Pharmacol Exp Ther 320:354–364

    Article  CAS  PubMed  Google Scholar 

  • Lefrant JY, de La Coussaye JE, Ripart J, Muller L, Lalourcey L, Peray PA, et al. (2001) The comparative electrophysiologic and hemodynamic effects of a large dose of ropivacaine and bupivacaine in anesthetized and ventilated piglets. Anest Analg 93:1598–1605 table of contents.

    Article  CAS  Google Scholar 

  • Leone S, Di Cianni S, Casati A, Fanelli G (2008) Pharmacology, toxicology, and clinical use of new long acting local anesthetics, ropivacaine and levobupivacaine. Acta bio-medica: Atenei Parmensis 79:92–105

    CAS  Google Scholar 

  • Liu BG, Zhuang XL, Li ST, Xu GH (2000) The effects of ropivacaine on sodium currents in dorsal horn neurons of neonatal rats. Anesth Analg 90:1034–1038

    Article  CAS  PubMed  Google Scholar 

  • Maier SK, Westenbroek RE, Schenkman KA, Feigl EO, Scheuer T, Catterall WA (2002) An unexpected role for brain-type sodium channels in coupling of cell surface depolarization to contraction in the heart. Proc Natl Acad Sci U S A 99:4073–4078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maier SK, Westenbroek RE, McCormick KA, Curtis R, Scheuer T, Catterall WA (2004) Distinct subcellular localization of different sodium channel alpha and beta subunits in single ventricular myocytes from mouse heart. Circulation 109:1421–1427

    Article  CAS  PubMed  Google Scholar 

  • Maier SK, Westenbroek RE, Yamanushi TT, Dobrzynski H, Boyett MR, Catterall WA, et al. (2003) An unexpected requirement for brain-type sodium channels for control of heart rate in the mouse sinoatrial node. Proc Natl Acad Sci U S A 100:3507–3512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClure JH (1996) Ropivacaine. Br J Anaesth 76:300–307

    Article  CAS  PubMed  Google Scholar 

  • Moller R, Covino BG (1990) Cardiac electrophysiologic properties of bupivacaine and lidocaine compared with those of ropivacaine, a new amide local anesthetic. Anesthesiology 72:322–329

    Article  CAS  PubMed  Google Scholar 

  • Nadrowitz F, Stoetzer C, Foadi N, Ahrens J, Wegner F, Lampert A, et al. (2013) The distinct effects of lipid emulsions used for "lipid resuscitation" on gating and bupivacaine-induced inhibition of the cardiac sodium channel Nav1.5. Anesth Analg 117:1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Nau C, Wang SY, Strichartz GR, Wang GK (2000) Block of human heart hH1 sodium channels by the enantiomers of bupivacaine. Anesthesiology 93:1022–1033

    Article  CAS  PubMed  Google Scholar 

  • Ohmura S, Kawada M, Ohta T, Yamamoto K, Kobayashi T (2001) Systemic toxicity and resuscitation in bupivacaine-, levobupivacaine-, or ropivacaine-infused rats. Anesth Analg 93:743–748

    Article  CAS  PubMed  Google Scholar 

  • Schulze V, Stoetzer C, O'Reilly AO, Eberhardt E, Foadi N, Ahrens J, et al. (2014) The opioid methadone induces a local anaesthetic-like inhibition of the cardiac Na(+) channel, Na(v)1.5. Br J Pharmacol 171:427–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwoerer AP, Scheel H, Friederich P (2015). A comparative analysis of bupivacaine and ropivacaine effects on human cardiac SCN5A channels. Anest Analg

  • Scott DB, Lee A, Fagan D, Bowler GM, Bloomfield P, Lundh R (1989) Acute toxicity of ropivacaine compared with that of bupivacaine. Anesth Analg 69:563–569

    CAS  PubMed  Google Scholar 

  • Sztark F, Malgat M, Dabadie P, Mazat JP (1998) Comparison of the effects of bubivacaine and ropivacaine on heart cell mitochondrial bioenergetics. Anesthesiology 88(5):1340–1349

    Article  CAS  PubMed  Google Scholar 

  • Stoetzer C, Kistner K, Stuber T, Wirths M, Schulze V, Doll T, et al. (2015) Methadone is a local anaesthetic-like inhibitor of neuronal Na + channels and blocks excitability of mouse peripheral nerves. Br J Anaesth 114:110–120

    Article  CAS  PubMed  Google Scholar 

  • Valenzuela C, Snyders DJ, Bennett PB, Tamargo J, Hondeghem LM (1995) Stereoselective block of cardiac sodium channels by bupivacaine in Guinea pig ventricular myocytes. Circulation 92:3014–3024

    Article  CAS  PubMed  Google Scholar 

  • Westenbroek RE, Bischoff S, Fu Y, Maier SK, Catterall WA, Scheuer T (2013) Localization of sodium channel subtypes in mouse ventricular myocytes using quantitative immunocytochemistry. J Mol Cell Cardiol 64:69–78

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Atack TC, Stroud DM, Zhang W, Hall L, Roden DM (2012) Blocking Scn10a channels in heart reduces late sodium current and is antiarrhythmic. Circ Res 111:322–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Ji H, Liu Z, Ji Y, You X, Ding G, et al. (2014) Voltage-dependent blockade by bupivacaine of cardiac sodium channels expressed in xenopus oocytes. Neurosci Bull 30:697–710

    Article  CAS  PubMed  Google Scholar 

  • Zink W, Graf BM (2008) The toxicity of local anesthetics: the place of ropivacaine and levobupivacaine. Curr Opin Anaesthesiol 21:645–650

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the assistance of Heike Bürger (Anesthesiology, Hannover) for excellent assistance and Andreas Niesel (Neurology, Hannover) for excellent technical support. This study was supported by internal funding of the Department of Anesthesiology and Intensive Care, Hannover Medical School, Hannover. Work in the laboratory of A.K. was funded by a grant from the German Research Foundation (DFG) for the Cluster of Excellence from Regenerative Biology to Reconstructive Therapy (REBIRTH) at Hannover Medical School.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Stoetzer.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest.

Additional information

C. Stoetzer and T. Doll equally contributing authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stoetzer, C., Doll, T., Stueber, T. et al. Tetrodotoxin-sensitive α-subunits of voltage-gated sodium channels are relevant for inhibition of cardiac sodium currents by local anesthetics. Naunyn-Schmiedeberg's Arch Pharmacol 389, 625–636 (2016). https://doi.org/10.1007/s00210-016-1231-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-016-1231-9

Keywords

Navigation