Skip to main content

Advertisement

Log in

6-hydroxy-l-nicotine from Arthrobacter nicotinovorans sustain spatial memory formation by decreasing brain oxidative stress in rats

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Male Wistar rats were subjected to chronic 6-hydroxy-l-nicotine treatment (6HLN, 0.3 mg/kg, i.p., seven consecutive days) and their memory performance was studied by means of Y-maze and radial arm-maze tasks. 6HLN significantly increased spontaneous alternations in Y-maze task and working memory in radial arm-maze task, suggesting effects on short-term memory, without affecting long-term memory, explored by reference memory in radial arm-maze task. In addition, 6HLN increased antioxidant enzymes activity and decreased production of lipid peroxidation, suggesting antioxidant effects. Also, the linear regression between behavioral measures and oxidative stress markers resulted in significant correlations. Therefore, positive effects of 6HLN on spatial memory may occur by antioxidant actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alkadhi KA, Srivareerat M, Tran TT (2010) Intensification of long-term memory deficit by chronic stress and prevention by nicotine in a rat model of Alzheimer’s disease. Mol Cell Neurosci 45:289–296

    Article  PubMed  CAS  Google Scholar 

  2. Barr J, Sharma CS, Sarkar S, Wise K, Dong L, Periyakaruppan A, Ramesh GT (2007) Nicotine induces oxidative stress and activates nuclear transcription factor kappa B in rat mesencephalic cells. Mol Cell Biochem 297:93–99

    Article  PubMed  CAS  Google Scholar 

  3. Bradford MM (1976) A rapid and sensitive for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  4. Brandsch R (2006) Microbiology and biochemistry of nicotine degradation. Appl Microbiol Biotechnol 69:493–498

    Article  PubMed  CAS  Google Scholar 

  5. Buccafusco JJ, Shuster LC, Terry JAV (2007) Disconnection between activation and desensitization of autonomic nicotinic receptors by nicotine and cotinine. Neurosci Lett 413:68–71

    Article  PubMed  CAS  Google Scholar 

  6. Celie PH, van Rossum-Fikkert SE, van Dijk WJ, Brejc K, Smit AB, Sixma TK (2004) Nicotine and carbamylcholine binding to nicotinic acetylcholine receptors as studied in AChBP crystal structures. Neuron 41:907–914

    Article  PubMed  CAS  Google Scholar 

  7. Chattopadhyay K, Chattopadhyay BD (2008) Effect of nicotine on lipid profile, peroxidation and antioxidant enzymes in female rats with restricted dietary protein. Indian J Med Res 127:571–576

    PubMed  CAS  Google Scholar 

  8. Ciobica A, Hritcu L, Artenie V, Stoica B, Bild V (2009) Effects of 6-OHDA infusion into the hypothalamic paraventricular nucleus in mediating stress-induced behavioral responses and oxidative damage in rats. Acta Endo (Buc) 5:425–436

    Article  CAS  Google Scholar 

  9. Crooks PA, Li M, Dwoskin LP (1997) Metabolites of nicotine in rat brain after peripheral nicotine administration. Cotinine, nornicotine, and norcotinine. Drug Metab Dispos 25:47–54

    PubMed  CAS  Google Scholar 

  10. Dome P, Lazary J, Kalapos MP, Rihmer Z (2010) Smoking, nicotine and neuropsychiatric disorders. Neurosci Biobehav Rev 34:295–342

    Article  PubMed  CAS  Google Scholar 

  11. Doolittle DJ, Winegar R, Lee CK, Caldwell WS, Hayes AW, de Bethizy JD (1995) The genotoxic potential of nicotine and its major metabolites. Mutat Res 344:95–102

    Article  PubMed  CAS  Google Scholar 

  12. Emilien G, Beyreuther K, Masters CL, Maloteaux JM (2000) Prospects for pharmacological intervention in Alzheimer disease. Arch Neurol 57:454–459

    Article  PubMed  CAS  Google Scholar 

  13. Hefco V, Yamada K, Hefco A, Hritcu L, Tiron A, Olariu A, Nabeshima T (2003) Effects of nicotine on memory impairment induced by blockade of muscarinic, nicotinic and dopamine D2 receptors in rats. Eur J Pharmacol 474:227–232

    Article  PubMed  CAS  Google Scholar 

  14. Hritcu L, Nabeshima T (2009) Kainic acid lesion-induced spatial memory deficits of rats. Cent Eur J Biol 4:179–185

    Article  Google Scholar 

  15. Hritcu L, Clicinschi M, Nabeshima T (2007) Brain serotonin depletion impairs short-term memory, but not long-term memory in rats. Physiol Behav 91:652–657

    Article  PubMed  CAS  Google Scholar 

  16. Hritcu L, Ciobica A, Gorgan L (2009) Nicotine-induced memory impairment by increasing brain oxidative stress. Cent Eur J Biol 4:335–342

    Article  CAS  Google Scholar 

  17. Jarrard LE, Davidson TL, Bowring B (2004) Functional differentiation within the medial temporal lobe in the rat. Hippocampus 14:434–449

    Article  PubMed  Google Scholar 

  18. Karelson E, Bogdanovic N, Garlind A, Winblad B, Zilmer K, Kullisaar T, Vihalemm T, Kairane C, Zilmer M (2001) The cerebrocortical areas in normal brain aging and in Alzheimer’s disease: noticeable differences in the lipid peroxidation level and in antioxidant defense. Neurochem Res 26:353–361

    Article  PubMed  CAS  Google Scholar 

  19. Leite TB, Gomes D, Miteva M, Chomilier J, Villoutreix B, Tuffery P (2007) Frog: a FRee Online druG 3D conformation generator. Nucleic Acids Res 35:W568–W572

    Article  PubMed  Google Scholar 

  20. Maier CM, Chan PH (2002) Role of superoxide dismutases in oxidative damage and neurodegenerative disorders. Neuroscientist 8:323–334

    Article  PubMed  CAS  Google Scholar 

  21. Marks MJ, Romm E, Campbell SM, Collins AC (1989) Variation of nicotinic binding sites among inbred strains. Pharmacol Biochem Behav 33:679–689

    Article  PubMed  CAS  Google Scholar 

  22. Maurice T, Lockhart BP, Privat A (1996) Amnesia induced in mice by centrally administered beta-amyloid peptides involves cholinergic dysfunction. Brain Res 706:181–193

    Article  PubMed  CAS  Google Scholar 

  23. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  24. Noor R, Mittal S, Iqbal J (2002) Superoxide dismutase-applications and relevance to human diseases. Med Sci Monit 8:RA210–RA215

    PubMed  CAS  Google Scholar 

  25. O’Leary K, Parameswaran N, McIntosh JM, Quik M (2008) Cotinine selectively activates a subpopulation of alpha3/alpha6beta2 nicotinic receptors in monkey striatum. J Pharmacol Exp Ther 325:646–654

    Article  PubMed  Google Scholar 

  26. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  27. Padurariu M, Ciobica A, Hritcu L, Stoica B, Bild W, Stefanescu C (2010) Changes of some oxidative stress markers in the serum of patients with mild cognitive impairment and Alzheimer’s disease. Neurosci Lett 469:6–10

    Article  PubMed  CAS  Google Scholar 

  28. Pogocki D, Ruman T, Danilczuk M, Danilczuk M, Celuch M, Wałajtys-Rode E (2007) Application of nicotine enantiomers, derivatives and analogues in therapy of neurodegenerative disorders. Eur J Pharmacol 563:18–39

    Article  PubMed  CAS  Google Scholar 

  29. Potter A, Corwin J, Lang J, Piasecki M, Lenox R, Newhouse PA (1999) Acute effects of the selective cholinergic channel activator (nicotinic agonist) ABT-418 in Alzheimer’s disease. Psychopharmacology 142:334–342

    Article  PubMed  CAS  Google Scholar 

  30. Riveles K, Huang LZ, Quik M (2008) Cigarette smoke, nicotine and cotinine protect against 6-hydroxydopamine-induced toxicity in SH-SY5Y cells. Neurotoxicology 29:421–427

    Article  PubMed  CAS  Google Scholar 

  31. Sandu C, Chiribau CB, Brandsch R (2003) Characterization of HdnoR, the transcriptional repressor of the 6-hydroxy-D-nicotine oxidase gene of Arthrobacter nicotinovorans pAO1, and its DNA binding activity in response to L- and D-nicotine derivatives. J Biol Chem 278:51307–51315

    Article  PubMed  CAS  Google Scholar 

  32. Sanner MF (1999) Python: a programming language for software integration and development. J Mol Graph Model 17:57–61

    PubMed  CAS  Google Scholar 

  33. Schuessel K, Leutner S, Cairns NJ (2004) Impact of gender on upregulation of antioxidant defence mechanisms in Alzheimer’s disease brain. J Neural Transm 11:1167–1182

    Google Scholar 

  34. Sharma M, Gupta YK (2002) Chronic treatment with trans resveratrol prevents intracerebroventricular streptozotocin induced cognitive impairment and oxidative stress in rats. Life Sci 7:2489–2498

    Article  Google Scholar 

  35. Sudheer AR, Kalpana C, Srinivasan M, Menon VP (2005) Ferulic acid modulates altered lipid profiles and prooxidant/antioxidant status in circulation during nicotine-induced toxicity: a dosedependent study. Toxicol Mech Method 15:375–381

    Article  CAS  Google Scholar 

  36. Suleyman H, Gumustekin K, Taysi S, Keles S, Oztasan N, Aktas O (2002) Beneficial effects of Hippophae rhamnoides L. on nicotine induced oxidative stress in rat blood compared with vitamin E. Biol Pharm Bull 25:1133–1136

    Article  PubMed  CAS  Google Scholar 

  37. Sultana R, Piroddi M, Galli F, Butterfield DA (2008) Protein levels and activity of some antioxidant enzymes in hippocampus of subjects with amnestic mild cognitive impairment. Neurochem Res 33:2540–2546

    Article  PubMed  CAS  Google Scholar 

  38. Titus ADJ, Shankaranarayana BS, Harsha HN, Ramkumar K, Srikumar BN, Singh SB, Chattarji S, Raju TR (2007) Hypobaric hypoxia-induced dendritic atrophy of hippocampal neurons is associated with cognitive impairment in adult rats. Neuroscience 145:265–278

    Article  PubMed  CAS  Google Scholar 

  39. Ulens C, Akdemir A, Jongejan A, van Elk R, Bertrand S, Perrakis A, Leurs R, Smit AB, Sixma TK, Bertrand D, de Esch IJP (2009) Use of acetylcholine binding protein in the search for novel alpha 7 nicotinic receptor ligands. In silico docking, pharmacological screening, and X-ray analysis. J Med Chem 52:2372–2383

    Article  PubMed  CAS  Google Scholar 

  40. Valdivia A, Pérez-Álvarez S, Aroca-Aguilar J, Ikuta I, Jordán J (2009) Superoxide dismutases: a physiopharmacological update. J Physiol Biochem 65:195–208

    Article  PubMed  CAS  Google Scholar 

  41. Wilson AL, Langley LK, Monley J, Bauer T, Rottunda S, McFalls E, Kovera C, McCarten JR (1995) Nicotine patches in Alzheimer’s disease: pilot study on learning, memory, and safety. Pharmacol Biochem Behav 51:509–514

    Article  PubMed  CAS  Google Scholar 

  42. Winterbourn C, Hawkins R, Brian M, Carrell R (1975) The estimation of red cell superoxide dismutase activity. J Lab Clin Med 85:337

    PubMed  CAS  Google Scholar 

  43. Yildiz D (2004) Nicotine, its metabolism and an overview of its biological effects. Toxicon 43:619–632

    Article  PubMed  CAS  Google Scholar 

  44. Yusuf S, Adelaiye BA, Agunu A (2009) Effect of Ziziphus mauritiania (L.) seed extracts on spatial recognition memory of rats as measured by the Y-maze test. J Nat Prod 2:31–39

    Google Scholar 

Download references

Acknowledgments

Marius Mihasan was supported by CNCSIS-UEFISCSU, project number PN-II-RU 337/2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucian Hritcu.

Additional information

Lucian Hritcu, Marius Stefan, and Marius Mihasan equally contributed to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hritcu, L., Stefan, M., Brandsch, R. et al. 6-hydroxy-l-nicotine from Arthrobacter nicotinovorans sustain spatial memory formation by decreasing brain oxidative stress in rats. J Physiol Biochem 69, 25–34 (2013). https://doi.org/10.1007/s13105-012-0184-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-012-0184-9

Keywords

Navigation