Skip to main content

Advertisement

Log in

Erythropoietin ameliorates the reduced migration of human fibroblasts during in vitro hypoxia

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Erythropoietin promotes the formation of granulation tissue when administered to soft tissue wounds and it was shown to be most effective under tissue hypoxia. However, the action of erythropoietin on the cellular level is not well understood. In order to get a better insight into these processes, an in vitro wound healing assay was applied. Two main players of soft tissue healing—fibroblasts and microvascular endothelial cells—were used as mono- and co-cultures, subsequently inflicting in vitro wounds. Cell migration, proliferation, the differentiation of fibroblasts to myofibroblasts, and the release of vascular endothelial cell growth factor A and angiogenin were quantified in response to hypoxia and erythropoietin (5 IU/ml). Erythropoietin supplementation did neither affect proliferation nor migration of endothelial cells and fibroblasts under normoxia. Under hypoxia, the reduced fibroblast migration was ameliorated by erythropoietin. This effect coincided with an attenuated release of vascular endothelial growth factor A, whereas angiogenin release was unaffected by erythropoietin. The in vitro model applied in this study may represent an adequate approximation to certain aspects of the in vivo status of soft tissue regeneration and the results might serve to interpret the in vivo efficiency of erythropoietin at the cellular level: Erythropoietin has different impacts on the cells in normoxia and hypoxia. Its positive influence on fibroblast migration during hypoxia seems to support the strategies of applying erythropoietin in those chronic wounds, which exhibit fibroblastic dysfunction although good vascularisation is present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alvarez Arroyo MV, Castilla MA, Gonzalez Pacheco FR, Tan D, Riesco A, Casado S, Caramelo C (1998) Role of vascular endothelial growth factor on erythropoietin-related endothelial cell proliferation. J Am Soc Nephrol 9:1998–2004

    CAS  PubMed  Google Scholar 

  2. Anagnostou A, Lee ES, Kessimian N, Levinson R, Steiner M (1990) Erythropoietin has a mitogenic and positive chemotactic effect on endothelial cells. Proc Nat Acad Sci USA 87:5978–5982

    Article  CAS  PubMed  Google Scholar 

  3. Arcasoy MO (2008) The non-haematopoietic biological effects of erythropoietin. Br J Haematol 141:14–31

    Article  CAS  PubMed  Google Scholar 

  4. Avasarala JR, Konduru SS (2005) Recombinant erythropoietin down-regulates IL-6 and CXCR4 genes in TNF-alpha-treated primary cultures of human microvascular endothelial cells: implications for multiple sclerosis. J Mol Neurosci 25:183–189

    Article  CAS  PubMed  Google Scholar 

  5. Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M (2008) Growth factors and cytokines in wound healing. Wound Repair Regen 16:585–601

    Article  PubMed  Google Scholar 

  6. Bates DO, Jones ROP (2003) The role of vascular endothelial growth factor in wound healing. Int J Low Extrem Wounds 2:107–120

    Article  PubMed  Google Scholar 

  7. Beleslin-Cokic BB, Cokic VP, Yu X, Weksler BB, Schechter AN, Noguchi CT (2004) Erythropoietin and hypoxia stimulate erythropoietin receptor and nitric oxide production by endothelial cells. Blood 104:2073–2080

    Article  CAS  PubMed  Google Scholar 

  8. Buemi M, Galeano M, Sturiale A, Ientile R, Crisafulli C, Parisi A, Catania M, Calapai G, Impala P, Aloisi C, Squadrito F, Altavilla D, Bitto A, Tuccari G, Frisina N (2004) Recombinant human erythropoietin stimulates angiogenesis and healing of ischemic skin wounds. Shock 22:169–173

    Article  CAS  PubMed  Google Scholar 

  9. Buemi M, Vaccaro M, Sturiale A, Galeano MR, Sansotta C, Cavallari V, Floccari F, D’Amico D, Torre V, Calapai G, Frisina N, Guarneri F, Vermiglio G (2002) Recombinant human erythropoietin influences revascularization and healing in a rat model of random ischaemic flaps. Acta Derm Venereol 82:411–417

    Article  CAS  PubMed  Google Scholar 

  10. Carlini RG, Dusso AS, Obialo CI, Alvarez UM, Rothstein M (1993) Recombinant human erythropoietin (rHuEPO) increases endothelin-1 release by endothelial cells. Kidney Int 43:1010–1014

    Article  CAS  PubMed  Google Scholar 

  11. Chiarelli F, Pomilio M, Mohn A, Tumini S, Verrotti A, Mezzetti A, Cipollone F, Wasniewska M, Morgese G, Spagnoli A (2002) Serum angiogenin concentrations in young patients with diabetes mellitus. Eur J Clin Invest 32:110–114

    Article  CAS  PubMed  Google Scholar 

  12. Detmar M, Brown LF, Berse B, Jackman RW, Elicker BM, Dvorak HF, Claffey KP (1997) Hypoxia regulates the expression of vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) and its receptors in human skin. J Invest Dermatol 108:263–268

    Article  CAS  PubMed  Google Scholar 

  13. Eul B, Rose F, Krick S, Savai R, Goyal P, Klepetko W, Grimminger F, Weissmann N, Seeger W, Hänze J (2006) Impact of HIF-1α and HIF-2α on proliferation and migration of human pulmonary artery fibroblasts in hypoxia. FASEB J 20:163–165

    CAS  PubMed  Google Scholar 

  14. Falanga V, Kirsner RS (1993) Low oxygen stimulates proliferation of fibroblasts seeded as single cells. J Cell Physiol 154:506–510

    Article  CAS  PubMed  Google Scholar 

  15. Fandrey J (2004) Oxygen-dependent and tissue-specific regulation of erythropoietin gene expression. Am J Physiol Regul Integr Comp Physiol 286:R977–R988

    CAS  PubMed  Google Scholar 

  16. Fisher JW, Koury S, Ducey T, Mendel S (1996) Erythropoietin production by interstitial cells of hypoxic monkey kidneys. Br J Haematol 95:27–32

    Article  CAS  PubMed  Google Scholar 

  17. Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16:4604–4613

    CAS  PubMed  Google Scholar 

  18. Gabbiani G (2003) The myofibroblast in wound healing and fibrocontractive diseases. J Pathol 200(4):500–503

    Article  CAS  PubMed  Google Scholar 

  19. Galeano M, Altavilla D, Bitto A, Minutoli L, Calò M, Lo Cascio P, Polito F, Giugliano G, Squadrito G, Mioni C, Giuliani D, Venuti FS, Squadrito F (2006) Recombinant human erythropoietin improves angiogenesis and wound healing in experimental burn wounds. Crit Care Med 34:1139–1146

    Article  CAS  PubMed  Google Scholar 

  20. Galeano M, Altavilla D, Cucinotta D, Russo GT, Calo M, Bitto A, Marini H, Marini R, Adamo EB, Seminara P, Minutoli L, Torre V, Squadrito F (2004) Recombinant human erythropoietin stimulates angiogenesis and wound healing in the genetically diabetic mouse. Diabetes 53:2509–2517

    Article  CAS  PubMed  Google Scholar 

  21. Gao X, Xu Z (2008) Mechanisms of action of angiogenin. Acta Biochim Biophys Sin 40:619–624

    Article  CAS  PubMed  Google Scholar 

  22. Ghezzi P, Brines M (2004) Erythropoietin as an antiapoptotic, tissue-protective cytokine. Cell Death Differ 11:S37–S44

    Article  CAS  PubMed  Google Scholar 

  23. Haroon ZA, Amin K, Jiang X, Arcasoy MO (2003) A novel role for erythropoietin during fibrin induced wound-healing response. Am J Pathol 163:993–1000

    Article  CAS  PubMed  Google Scholar 

  24. Iida T, Mine S, Fujimoto H, Suzuki K, Minami Y, Tanaka Y (2002) Hypoxia-inducible factor-1 alpha induces cell cycle arrest of endothelial cells. Genes Cells 7:143–149

    Article  CAS  PubMed  Google Scholar 

  25. Keast DH, Fraser C (2004) Treatment of chronic skin ulcers in individuals with anemia of chronic disease using recombinant human erythropoietin (EPO): a review of four cases. Ostomy Wound Manage 50:64–70

    PubMed  Google Scholar 

  26. Kishimoto K, Liu S, Tsuji T, Olson KA, Hu G (2005) Endogenous angiogenin in endothelial cells is a general requirement for cell proliferation and angiogenesis. Oncogene 24:445–456

    Article  CAS  PubMed  Google Scholar 

  27. Lerman OZ, Galiano RD, Armour M, Levine JP, Gurtner GC (2003) Cellular dysfunction in the diabetic fibroblast: impairment in migration, vascular endothelial growth factor production, and response to hypoxia. Am J Pathol 162:303–312

    Article  CAS  PubMed  Google Scholar 

  28. Li W, Li Y, Guan S, Fan J, Cheng CF, Bright AM, Chinn C, Chen M, Woodley DT (2007) Extracellular heat shock protein-90a: linking hypoxia to skin cell motility and wound healing. EMBO J 26:1221–1233

    Article  CAS  PubMed  Google Scholar 

  29. Mogford JE, Tawil N, Chen A, Gies D, Xia Y, Mustoe TA (2002) Effect of age and hypoxia on TGFbeta1 receptor expression and signal transduction in human dermal fibroblasts: impact on cell migration. J Cell Physiol 190:259–265

    Article  CAS  PubMed  Google Scholar 

  30. Oberringer M, Jennewein M, Motsch SE, Pohlemann T, Seekamp A (2005) Different cell cycle responses of wound healing protagonists to transient in vitro hypoxia. Histochem Cell Biol 123:595–603

    Article  CAS  PubMed  Google Scholar 

  31. Oberringer M, Meins C, Bubel M, Pohlemann T (2007) A new in vitro wound model based on the co-culture of human dermal microvascular endothelial cells and human dermal fibroblasts. Biol Cell 99:197–207

    Article  CAS  PubMed  Google Scholar 

  32. Oberringer M, Meins C, Bubel M, Pohlemann T (2008) In vitro wounding: effects of hypoxia and transforming growth factor β1 on proliferation, migration and myofibroblastic differentiation in an endothelial cell-fibroblast co-culture model. J Mol Histol 39:37–47

    Article  CAS  PubMed  Google Scholar 

  33. Powell DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, West AB (1999) Myofibroblasts. I. Paracrine cells important in health and disease. Am J Physiol 277:C1–C19

    CAS  PubMed  Google Scholar 

  34. Purins K, Enblad P, Sandhagen B, Lewén A (2010) Brain tissue oxygen monitoring: a study of in vitro accuracy and stability of neurovent-PTO and licox sensors. Acta Neurochir 152(4):681–688

    Article  Google Scholar 

  35. Ribatti D, Presta M, Vacca A, Ria R, Giuliani R, Dell’Era P, Nico B, Roncali L, Dammacco F (1999) Human erythropoietin induces a pro-angiogenic phenotype in cultured endothelial cells and stimulates neovascularization in vivo. Blood 93:2627–2636

    CAS  PubMed  Google Scholar 

  36. Sayan H, Ozacmak VH, Guven A, Aktas RG, Ozacmak ID (2006) Erythropoietin stimulates wound healing and angiogenesis in mice. J Invest Surg 19:163–173

    Article  PubMed  Google Scholar 

  37. Short M, Nemenoff RA, Zawada WM, Stenmark KR, Das M (2004) Hypoxia induces differentiation of pulmonary artery adventitial fibroblasts into myofibroblasts. Am J Physiol Cell Physiol 286:C416–C425

    Article  CAS  PubMed  Google Scholar 

  38. Shweiki D, Itin A, Soffer D, Keshet E (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359:843–845

    Article  CAS  PubMed  Google Scholar 

  39. Siddiqui A, Galiano RD, Connors D, Gruskin E, Wu L, Mustoe TA (1996) Differential effects of oxygen on human dermal fibroblasts: acute versus chronic hypoxia. Wound Repair Regen 4:211–218

    Article  CAS  PubMed  Google Scholar 

  40. Sigounas G, Steiner M, Anagnostou A (1997) Synergism of hemopoietic growth factors on endothelial cell proliferation. Angiology 48:141–147

    Article  CAS  PubMed  Google Scholar 

  41. Siren AL, Fratelli M, Brines M, Goemans C, Casagrande S, Lewczuk P, Keenan S, Gleiter C, Pasquali C, Capobianco A, Mennini T, Heumann R, Cerami A, Ehrenreich H, Ghezzi P (2001) Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc Nat Acad Sci USA 98:4044–4049

    Article  CAS  PubMed  Google Scholar 

  42. Steinbrech DS, Mehrara BJ, Chau D, Rowe NM, Chin G, Lee T, Saadeh PB, Gittes GK, Longaker MT (1999) Hypoxia upregulates VEGF production in keloid fibroblasts. Ann Plast Surg 42:514–519

    Article  CAS  PubMed  Google Scholar 

  43. Tonnesen MG, Feng X, Clark RA (2000) Angiogenesis in wound healing. J Investig Dermatol Symp Proc 5:40–46

    Article  CAS  PubMed  Google Scholar 

  44. Tucci M, Hammerman SI, Furfaro S, Saukonnen JJ, Conca TJ, Farber HW (1997) Distinct effect of hypoxia on endothelial cell proliferation and cycling. Am J Physiol 272:C1700–C1708

    CAS  PubMed  Google Scholar 

  45. Villa P, Bigini P, Mennini T, Agnello D, Laragione T, Cagnotto A, Viviani B, Marinovich M, Cerami A, Coleman TR, Brines M, Ghezzi P (2003) Erythropoietin selectively attenuates cytokine production and inflammation in cerebral ischemia by targeting neuronal apoptosis. J Exp Med 198:971–975

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was financially supported by a scientific grant of the Saarland University (grant no. 61-cl).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Oberringer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breit, S., Bubel, M., Pohlemann, T. et al. Erythropoietin ameliorates the reduced migration of human fibroblasts during in vitro hypoxia. J Physiol Biochem 67, 1–13 (2011). https://doi.org/10.1007/s13105-010-0043-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-010-0043-5

Keywords

Navigation