Skip to main content
Log in

Backstepping control of MEMS gyroscope using adaptive neural observer

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

In this paper, a backstepping controller with an adaptive neural states observer is proposed for MEMS (Micro-Electro-Merchanical-System) gyroscopes in the presence of model uncertainties and external disturbance. Gyroscope states are usually assumed to be available in controller design procedure. However, gyroscope states may be unavailable in some circumstances. In this paper, an adaptive neural states observer is employed to estimate gyroscope states without physical sensors and thus can help reducing complexity of the gyroscope system. A backstepping controller is utilized to control the vibrating amplitude and frequency of the mass proof and the control law is carried out with states estimation rather than actual gyroscope states. Adaptive laws are investigated in the Lyapunov stability framework to guarantee the stability of the observer. Numerical simulation results demonstrate the effectiveness of the proposed control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Juan W, Fei J (2013) Adaptive fuzzy approach for non-linearity compensation in MEMS gyroscope. Trans Inst Meas Control 35(8):1008–1015

    Article  Google Scholar 

  2. Fazlyab M, Pedram MZ (2013) Parameter estimation and interval type-2 fuzzy sliding mode control of a z-axis MEMS gyroscope. ISA Trans 52(6):900–911

    Article  Google Scholar 

  3. Wang S, Fei J (2014) Robust adaptive sliding mode control of MEMS gyroscope using T–S fuzzy model. Nonlinear Dyn 77(1–2):361–371

    Article  MathSciNet  Google Scholar 

  4. Ashfaq RAR, Wang XZ, Huang JZX, Abbas H, He YL (2016) Fuzziness based semi-supervised learning approach for intrusion detection system. Inf Sci. doi:10.1016/j.ins.2016.04.019 (in press)

    Google Scholar 

  5. Gao S, Ning B, Dong H (2015) Adaptive neural control with intercepted adaptation for time-delay saturated nonlinear systems. Neural Comput Appl 26(8):1–9

    Article  Google Scholar 

  6. Wang XZ, Ashfaq RAR, Fu AM (2015) Fuzziness based sample categorization for classifier performance improvement. J Intell Fuzzy Syst 29(3):1185–1196

    Article  MathSciNet  Google Scholar 

  7. Wang XZ (2015) Learning from big data with uncertainty—editorial. J Intell Fuzzy Syst 28(5):2329–2330

    Article  MathSciNet  Google Scholar 

  8. Gao S, Dong H, Ning B, Chen L (2015) Neural adaptive control for uncertain nonlinear system with input saturation: state transformation based output feedback. Neurocomputing 159(1):117–125

    Article  Google Scholar 

  9. He YL, Wang XZ, Huang JZX (2016) Fuzzy nonlinear regression analysis using a random weight network. Inf Sci. doi:10.1016/j.ins.2016.01.037 (in press)

    Google Scholar 

  10. Gao S, Dong H, Ning B, Sun X (2015) Neural adaptive control for uncertain MIMO systems with constrained input via intercepted adaptation and single learning parameter approach. Nonlinear Dyn 82(3):1–18

    Article  MATH  MathSciNet  Google Scholar 

  11. Cui LZ, Yu FR, Yan Q (2016) When big data meets software-defined networking: SDN for big data and big data for SDN. IEEE Netw 30(1):58–65

    Article  Google Scholar 

  12. Gao S, Dong H, Sun X, Ning B (2015) Neural adaptive chaotic control with constrained input using state and output feedback. Chin Phys B 24(1):170–176

    Google Scholar 

  13. Laurent, Matthieu F, Antoine F (2013) Adaptive controller and observer for a magnetic microrobot. IEEE Trans Robot 29(4):1060–1067

    Article  Google Scholar 

  14. Wonhee K, Donghoon S, Daehee W (2013) Disturbance-observer-based position tracking controller in the presence of biased sinusoidal disturbance for electrohydraulic actuators. IEEE Trans Control Syst Technol 21(6):2290–2298

    Article  Google Scholar 

  15. Jiang, Xu D, Shi P, Lim CC (2014) Adaptive neural observer-based backstepping fault tolerant control for near space vehicle under control effector damage. IET Control Theory Appl 8(9):658–666

    Article  MathSciNet  Google Scholar 

  16. Chen M, Ge S (2013) Direct adaptive neural control for a class of uncertain nonaffine nonlinear systems based on disturbance observer. IEEE Trans Cybern 43(4):1213–1225

    Article  Google Scholar 

  17. Li Y, Tong S, Li T (2013) Adaptive fuzzy backstepping control of static var compensator based on state observer. Nonlinear Dyn 73(1–2):133–142

    Article  MATH  MathSciNet  Google Scholar 

  18. Choi J, Farrell J (2001) Adaptive observer backstepping control using neural networks. IEEE Trans Neural Netw 12(5):1103–1112

    Article  Google Scholar 

  19. Yao Y, Jiao Z, Ma D (2014) Extended-state-observer-based output feedback nonlinear robust control of hydraulic systems with backstepping. IEEE Trans Industr Electron 61(11):6285–6293

    Article  Google Scholar 

  20. Tong S, Li Y, Shi P (2012) Observer-based adaptive fuzzy backstepping output feedback control of uncertain MIMO pure-feedback nonlinear systems. IEEE Trans Fuzzy Syst 20(4):771–785

    Article  Google Scholar 

  21. Boulkroune A, Bounar N, M’Saad, Farza M (2014) Indirect adaptive fuzzy control scheme based on observer for nonlinear systems: a novel SPR-filter approach. Neurocomputing 135(SI):378–387

    Article  Google Scholar 

  22. Zhou Q, Shi P, Xu S, Li H (2013) Observer-based adaptive neural network control for nonlinear stochastic systems with time delay. IEEE Trans Neural Net Learn Syst 24(1):71–80

    Article  Google Scholar 

  23. Ting, Chang Y (2013) Observer-based backstepping control of linear stepping motor. Control Eng Pract 21(7):730–739

    Article  Google Scholar 

  24. Xu Y, Tong S, Li YM (2013) Observer-based fuzzy adaptive control of nonlinear systems with actuator faults and unmodeled dynamics. Neural Comput Appl 23(S1):391–405

    Article  Google Scholar 

  25. Yoo S, Park J, Choi Y (2008) Output feedback dynamic surface control of flexible joint robots. Int J Control Autom Syst 6(2):223–233

    Google Scholar 

  26. Na J, Ren X, Zheng D (2013) Adaptive control for nonlinear pure-feedback systems with high-order sliding mode observer. IEEE Trans Neural Netw Learn Syst 24(3):370–382

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the anonymous reviewers for your constructive comments that improved the quality of the paper. This work is partially supported by National Science Foundation of China under Grant No. 61374100; Natural Science Foundation of Jiangsu Province under Grant No. BK20131136.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, C., Fei, J. Backstepping control of MEMS gyroscope using adaptive neural observer. Int. J. Mach. Learn. & Cyber. 8, 1863–1873 (2017). https://doi.org/10.1007/s13042-016-0564-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-016-0564-5

Keywords

Navigation