Skip to main content

Advertisement

Log in

Unveiling the Hidden Impact: Hematoma Volumes Unravel Circuit Disruptions in Intracerebral Hemorrhage

  • Research
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Intracerebral hemorrhage (ICH) imposes a significant burden on patients, and the volume of hematoma plays a crucial role in determining the severity and prognosis of ICH. Although significant recent progress has been made in understanding the cellular and molecular mechanisms of surrounding brain tissue in ICH, our current knowledge regarding the precise impact of hematoma volumes on neural circuit damage remains limited. Here, using a viral tracing technique in a mouse model of striatum ICH, two distinct patterns of injury response were observed in upstream connectivity, characterized by both linear and nonlinear trends in specific brain areas. Notably, even low-volume hematomas had a substantial impact on downstream connectivity. Neurons in the striatum-ICH region exhibited heightened excitability, evidenced by electrophysiological measurements and changes in metabolic markers. Furthermore, a strong linear relationship (R2 = 0.91) was observed between hematoma volumes and NFL damage, suggesting a novel biochemical index for evaluating changes in neural injury. RNA sequencing analysis revealed the activation of the MAPK signaling pathway following hematoma, and the addition of MAPK inhibitor revealed a decrease in neuronal circuit damage, leading to alleviation of motor dysfunction in mice. Taken together, our study highlights the crucial role of hematoma size as a determinant of circuit injury in ICH. These findings have important implications for clinical evaluations and treatment strategies, offering opportunities for precise therapeutic approaches to mitigate the detrimental effects of ICH and improve patient outcomes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated in this study are provided in the Supplementary Information and Source Data file. Source data are provided in this paper. The codes supporting the current study have not been deposited in a public repository, but are available from the corresponding author upon request.

References

  1. Rosand J. Preserving brain health after intracerebral haemorrhage. Lancet Neurol. 2021;20(11):879–80. https://doi.org/10.1016/S1474-4422(21)00339-2.

    Article  PubMed  Google Scholar 

  2. Xue M, Yong VW. Neuroinflammation in intracerebral haemorrhage: immunotherapies with potential for translation. Lancet Neurol. 2020;19(12):1023–32. https://doi.org/10.1016/S1474-4422(20)30364-1.

    Article  CAS  PubMed  Google Scholar 

  3. Collaborators GBDS. Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021;20(10):795–820. https://doi.org/10.1016/S1474-4422(21)00252-0.

    Article  Google Scholar 

  4. LoPresti MA, Bruce SS, Camacho E, Kunchala S, Dubois BG, Bruce E, et al. Hematoma volume as the major determinant of outcomes after intracerebral hemorrhage. J Neurol Sci. 2014;345(1–2):3–7. https://doi.org/10.1016/j.jns.2014.06.057.

    Article  PubMed  Google Scholar 

  5. Mayer SA. Intracerebral hemorrhage: natural history and rationale of ultra-early hemostatic therapy. Intensive Care Med. 2002;28(Suppl 2):S235–40. https://doi.org/10.1007/s00134-002-1470-8.

    Article  PubMed  Google Scholar 

  6. Morotti A, Boulouis G, Dowlatshahi D, Li Q, Shamy M, Salman RA, et al. Intracerebral haemorrhage expansion: definitions, predictors, and prevention. Lancet Neurol. 2023;22(2):159–71. https://doi.org/10.1016/S1474-4422(22)00338-6.

    Article  PubMed  Google Scholar 

  7. Wu CH, Chen CC, Lai CY, Hung TH, Lin CC, Chao M, et al. Treatment with TO901317, a synthetic liver X receptor agonist, reduces brain damage and attenuates neuroinflammation in experimental intracerebral hemorrhage. J Neuroinflammation. 2016;13(1):62. https://doi.org/10.1186/s12974-016-0524-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhou Y, Wang Y, Wang J, Anne Stetler R, Yang QW. Inflammation in intracerebral hemorrhage: from mechanisms to clinical translation. Prog Neurobiol. 2014;115:25–44. https://doi.org/10.1016/j.pneurobio.2013.11.003.

    Article  CAS  PubMed  Google Scholar 

  9. Zheng Y, Hu Q, Manaenko A, Zhang Y, Peng Y, Xu L, et al. 17beta-Estradiol attenuates hematoma expansion through estrogen receptor alpha/silent information regulator 1/nuclear factor-kappa b pathway in hyperglycemic intracerebral hemorrhage mice. Stroke. 2015;46(2):485–91. https://doi.org/10.1161/STROKEAHA.114.006372.

    Article  CAS  PubMed  Google Scholar 

  10. de Schotten TM, Forkel SJ. The emergent properties of the connected brain. Science. 2022;378(6619):505–10. https://doi.org/10.1126/science.abq2591.

    Article  CAS  Google Scholar 

  11. Leergaard TB, Bjaalie JG. Atlas-based data integration for mapping the connections and architecture of the brain. Science. 2022;378(6619):488–92. https://doi.org/10.1126/science.abq2594.

    Article  CAS  PubMed  Google Scholar 

  12. Axer M, Amunts K. Scale matters: the nested human connectome. Science. 2022;378(6619):500–4. https://doi.org/10.1126/science.abq2599.

    Article  CAS  PubMed  Google Scholar 

  13. Lee JH, Liu Q, Dadgar-Kiani E. Solving brain circuit function and dysfunction with computational modeling and optogenetic fMRI. Science. 2022;378(6619):493–9. https://doi.org/10.1126/science.abq3868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pasquereau B, DeLong MR, Turner RS. Primary motor cortex of the parkinsonian monkey: altered encoding of active movement. Brain. 2016;139(Pt 1):127–43. https://doi.org/10.1093/brain/awv312.

    Article  PubMed  Google Scholar 

  15. Gerfen CR. The neostriatal mosaic: compartmentalization of corticostriatal input and striatonigral output systems. Nature. 1984;311(5985):461–4. https://doi.org/10.1038/311461a0.

    Article  CAS  PubMed  Google Scholar 

  16. Huang T, Lin SH, Malewicz NM, Zhang Y, Zhang Y, Goulding M, et al. Identifying the pathways required for coping behaviours associated with sustained pain. Nature. 2019;565(7737):86–90. https://doi.org/10.1038/s41586-018-0793-8.

    Article  CAS  PubMed  Google Scholar 

  17. Zhu X, Tang HD, Dong WY, Kang F, Liu A, Mao Y, et al. Distinct thalamocortical circuits underlie allodynia induced by tissue injury and by depression-like states. Nat Neurosci. 2021;24(4):542–53. https://doi.org/10.1038/s41593-021-00811-x.

    Article  CAS  PubMed  Google Scholar 

  18. Lee JY, Jun H, Soma S, Nakazono T, Shiraiwa K, Dasgupta A, et al. Dopamine facilitates associative memory encoding in the entorhinal cortex. Nature. 2021;598(7880):321–6. https://doi.org/10.1038/s41586-021-03948-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Allsop SA, Wichmann R, Mills F, Burgos-Robles A, Chang CJ, Felix-Ortiz AC, et al. Corticoamygdala transfer of socially derived information gates observational learning. Cell. 2018;173(6):1329-42e18. https://doi.org/10.1016/j.cell.2018.04.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Benkert P, Meier S, Schaedelin S, Manouchehrinia A, Yaldizli O, Maceski A, et al. Serum neurofilament light chain for individual prognostication of disease activity in people with multiple sclerosis: a retrospective modelling and validation study. Lancet Neurol. 2022;21(3):246–57. https://doi.org/10.1016/S1474-4422(22)00009-6.

    Article  PubMed  Google Scholar 

  21. Preische O, Schultz SA, Apel A, Kuhle J, Kaeser SA, Barro C, et al. Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer’s disease. Nat Med. 2019;25(2):277–83. https://doi.org/10.1038/s41591-018-0304-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gafson AR, Barthelemy NR, Bomont P, Carare RO, Durham HD, Julien JP, et al. Neurofilaments: neurobiological foundations for biomarker applications. Brain. 2020;143(7):1975–98. https://doi.org/10.1093/brain/awaa098.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sellebjerg F, Magyari M. The prognostic value of neurofilament light chain in serum. Lancet Neurol. 2022;21(3):207–8. https://doi.org/10.1016/S1474-4422(22)00034-5.

    Article  PubMed  Google Scholar 

  24. Carmona-Iragui M, Alcolea D, Barroeta I, Videla L, Munoz L, Van Pelt KL, et al. Diagnostic and prognostic performance and longitudinal changes in plasma neurofilament light chain concentrations in adults with Down syndrome: a cohort study. Lancet Neurol. 2021;20(8):605–14. https://doi.org/10.1016/S1474-4422(21)00129-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hviid CVB, Gyldenholm T, Lauridsen SV, Hjort N, Hvas AM, Parkner T. Plasma neurofilament light chain is associated with mortality after spontaneous intracerebral hemorrhage. Clin Chem Lab Med. 2020;58(2):261–7. https://doi.org/10.1515/cclm-2019-0532.

    Article  CAS  PubMed  Google Scholar 

  26. Xu J, Chen Z, Yu F, Liu H, Ma C, Xie D, et al. IL-4/STAT6 signaling facilitates innate hematoma resolution and neurological recovery after hemorrhagic stroke in mice. Proc Natl Acad Sci U S A. 2020;117(51):32679–90. https://doi.org/10.1073/pnas.2018497117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Reiners JJ Jr, Lee JY, Clift RE, Dudley DT, Myrand SP. PD98059 is an equipotent antagonist of the aryl hydrocarbon receptor and inhibitor of mitogen-activated protein kinase kinase. Mol Pharmacol. 1998;53(3):438–45. https://doi.org/10.1124/mol.53.3.438.

    Article  CAS  PubMed  Google Scholar 

  28. Alessi DR, Cuenda A, Cohen P, Dudley DT, Saltiel AR. PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem. 1995;270(46):27489–94. https://doi.org/10.1074/jbc.270.46.27489.

    Article  CAS  PubMed  Google Scholar 

  29. Luo J, Xue D, Song F, Liu X, Li W, Wang Y. DUSP5 (dual-specificity protein phosphatase 5) suppresses BCG-induced autophagy via ERK 1/2 signaling pathway. Mol Immunol. 2020;126:101–9. https://doi.org/10.1016/j.molimm.2020.07.019.

    Article  CAS  PubMed  Google Scholar 

  30. Kreitzer AC, Malenka RC. Striatal plasticity and basal ganglia circuit function. Neuron. 2008;60(4):543–54. https://doi.org/10.1016/j.neuron.2008.11.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ Jr, et al. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science. 1990;250(4986):1429–32. https://doi.org/10.1126/science.2147780.

    Article  CAS  PubMed  Google Scholar 

  32. Abu-Rumeileh S, Abdelhak A, Foschi M, D’Anna L, Russo M, Steinacker P, et al. The multifaceted role of neurofilament light chain protein in non-primary neurological diseases. Brain. 2023;146(2):421–37. https://doi.org/10.1093/brain/awac328.

    Article  PubMed  Google Scholar 

  33. Bircak-Kuchtova B, Chung HY, Wickel J, Ehler J, Geis C. Neurofilament light chains to assess sepsis-associated encephalopathy: are we on the track toward clinical implementation? Crit Care. 2023;27(1):214. https://doi.org/10.1186/s13054-023-04497-4.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Coleman MP, Hoke A. Programmed axon degeneration: from mouse to mechanism to medicine. Nat Rev Neurosci. 2020;21(4):183–96. https://doi.org/10.1038/s41583-020-0269-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Balami JS, Chen RL, Grunwald IQ, Buchan AM. Neurological complications of acute ischaemic stroke. Lancet Neurol. 2011;10(4):357–71. https://doi.org/10.1016/S1474-4422(10)70313-6.

    Article  PubMed  Google Scholar 

  36. Summers DW, Milbrandt J, DiAntonio A. Palmitoylation enables MAPK-dependent proteostasis of axon survival factors. Proc Natl Acad Sci U S A. 2018;115(37):E8746–54. https://doi.org/10.1073/pnas.1806933115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Walker LJ, Summers DW, Sasaki Y, Brace EJ, Milbrandt J, DiAntonio A. MAPK signaling promotes axonal degeneration by speeding the turnover of the axonal maintenance factor NMNAT2. Elife. 2017;6:e22540. https://doi.org/10.7554/eLife.22540

    Article  PubMed  PubMed Central  Google Scholar 

  38. Puy L, Parry-Jones AR, Sandset EC, Dowlatshahi D, Ziai W, Cordonnier C. Intracerebral haemorrhage. Nat Rev Dis Primers. 2023;9(1):14. https://doi.org/10.1038/s41572-023-00424-7.

    Article  PubMed  Google Scholar 

  39. Li X, Gao X, Zhang W, Liu M, Han Z, Li M, et al. Microglial replacement in the aged brain restricts neuroinflammation following intracerebral hemorrhage. Cell Death Dis. 2022;13(1):33. https://doi.org/10.1038/s41419-021-04424-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sun Q, Xu X, Wang T, Xu Z, Lu X, Li X, et al. Neurovascular units and neural-glia networks in intracerebral hemorrhage: from mechanisms to translation. Transl Stroke Res. 2021;12(3):447–60. https://doi.org/10.1007/s12975-021-00897-2.

    Article  CAS  PubMed  Google Scholar 

  41. Dolphin AC, Lee A. Presynaptic calcium channels: specialized control of synaptic neurotransmitter release. Nat Rev Neurosci. 2020;21(4):213–29. https://doi.org/10.1038/s41583-020-0278-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rusakov DA. Disentangling calcium-driven astrocyte physiology. Nat Rev Neurosci. 2015;16(4):226–33. https://doi.org/10.1038/nrn3878.

    Article  CAS  PubMed  Google Scholar 

  43. Shi K, Tian DC, Li ZG, Ducruet AF, Lawton MT, Shi FD. Global brain inflammation in stroke. Lancet Neurol. 2019;18(11):1058–66. https://doi.org/10.1016/S1474-4422(19)30078-X.

    Article  PubMed  Google Scholar 

  44. Cheng Y, Zhang G, Li G. Targeting MAPK pathway in melanoma therapy. Cancer Metastasis Rev. 2013;32(3–4):567–84. https://doi.org/10.1007/s10555-013-9433-9.

    Article  CAS  PubMed  Google Scholar 

  45. Zille M, Farr TD, Keep RF, Romer C, Xi G, Boltze J. Novel targets, treatments, and advanced models for intracerebral haemorrhage. EBioMedicine. 2022;76:103880. https://doi.org/10.1016/j.ebiom.2022.103880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yu Z, Zhang L, Zhang G, Xia K, Yang Q, Huang T, et al. Lipids, apolipoproteins, statins, and intracerebral hemorrhage: a Mendelian randomization study. Ann Neurol. 2022;92(3):390–9. https://doi.org/10.1002/ana.26426.

    Article  CAS  PubMed  Google Scholar 

  47. Zwagemaker AF, Gouw SC, Jansen JS, Vuong C, Coppens M, Hu Q, et al. Incidence and mortality rates of intracranial hemorrhage in hemophilia: a systematic review and meta-analysis. Blood. 2021;138(26):2853–73. https://doi.org/10.1182/blood.2021011849.

    Article  CAS  PubMed  Google Scholar 

  48. Vanent KN, Leasure AC, Acosta JN, Kuohn LR, Woo D, Murthy SB, et al. Association of chronic kidney disease with risk of intracerebral hemorrhage. JAMA Neurol. 2022;79(9):911–8. https://doi.org/10.1001/jamaneurol.2022.2299.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China 12372303, Venture & Innovation Support Program for Chongqing Overseas Returnees cx2020079, and Scientific and Fundamental Research Funds for the Central Universities (2023CDJXY-050, 2023CDJXY-051).

Author information

Authors and Affiliations

Authors

Contributions

Thank the members: S.H. and Y.W. designed the experiments; Y.W. and Q.D. performed the experiments; R.W., S.C., F.D., H.Y., and N.H. performed the data analysis; S.H. and B.W. inspected the data and evaluated the findings; S.H. and B.W. wrote the manuscript with the help from all authors.

Corresponding authors

Correspondence to Shilei Hao or Bochu Wang.

Ethics declarations

Ethics Approval and Consent to Participate

All animal experiments followed the guidelines set forth by the NIH Guide for the Care and Use of Laboratory Animals (National Academies Press, 2011) and were approved by the Institutional Animal Care and Use Committee of Chongqing University.

Consent for Publication

All authors have approved the manuscript and agree with its submission.

Competing interests 

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1803 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Deng, Q., Wei, R. et al. Unveiling the Hidden Impact: Hematoma Volumes Unravel Circuit Disruptions in Intracerebral Hemorrhage. Transl. Stroke Res. (2024). https://doi.org/10.1007/s12975-024-01257-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12975-024-01257-6

Keywords

Navigation