Skip to main content

Advertisement

Log in

Anti-Apoptotic Effects of AMPA Receptor Antagonist Perampanel in Early Brain Injury After Subarachnoid Hemorrhage in Mice

  • Research
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

This study was aimed to investigate if acute neuronal apoptosis is induced by activation of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionate) receptors (AMPARs) and inhibited by a clinically available selective AMPAR antagonist and antiepileptic drug perampanel (PER) in subarachnoid hemorrhage (SAH), and if the mechanisms include upregulation of an inflammation-related matricellular protein periostin. Sham-operated and endovascular perforation SAH mice randomly received an administration of 3 mg/kg PER or the vehicle intraperitoneally. Post-SAH neurological impairments and increased caspase-dependent neuronal apoptosis were associated with activation of AMPAR subunits GluA1 and GluA2, and upregulation of periostin and proinflammatory cytokines interleukins-1β and -6, all of which were suppressed by PER. PER also inhibited post-SAH convulsion-unrelated increases in the total spectral power on video electroencephalogram (EEG) monitoring. Intracerebroventricularly injected recombinant periostin blocked PER’s anti-apoptotic effects on neurons. An intracerebroventricular injection of a selective agonist for GluA1 and GluA2 aggravated neurological impairment, neuronal apoptosis as well as periostin upregulation, but did not increase the EEG total spectral power after SAH. A higher dosage (10 mg/kg) of PER had even more anti-apoptotic effects compared with 3 mg/kg PER. Thus, this study first showed that AMPAR activation causes post-SAH neuronal apoptosis at least partly via periostin upregulation. A clinically available AMPAR antagonist PER appears to be neuroprotective against post-SAH early brain injury through the anti-inflammatory and anti-apoptotic effects, independent of the antiepileptic action, and deserves further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data from this study are available from the corresponding author on reasonable request.

References

  1. Suzuki H, Shiba M, Nakatsuka Y, Nakano F, Nishikawa H. Higher cerebrospinal fluid pH may contribute to the development of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Transl Stroke Res. 2017;8:165–73.

    Article  CAS  PubMed  Google Scholar 

  2. Suzuki H. What is early brain injury? Transl Stroke Res. 2015;6:1–3.

    Article  ADS  PubMed  Google Scholar 

  3. Suzuki H, Kanamaru H, Kawakita F, Asada R, Fujimoto M, Shiba M. Cerebrovascular pathophysiology of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Histol Histopathol. 2021;36:143–58.

    CAS  PubMed  Google Scholar 

  4. Kim JA, Rosenthal ES, Biswal S, Zafar S, Shenoy AV, O’Connor KL, Bechek SC, Valdery Moura J, Shafi MM, Patel AB, Cash SS, Westover MB. Epileptiform abnormalities predict delayed cerebral ischemia in subarachnoid hemorrhage. Clin Neurophysiol. 2017;128:1091–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Suzuki H, Kawakita F, Asada R. Neuroelectric mechanisms of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Int J Mol Sci. 2022;23:3102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kawakita F, Kanamaru H, Asada R, Suzuki Y, Nampei M, Nakajima H, Oinaka H, Suzuki H. Roles of glutamate in brain injuries after subarachnoid hemorrhage. Histol Histopathol. 2022;37:1041–51.

    CAS  PubMed  Google Scholar 

  7. Henshall DC, Simon RP. Epilepsy and apoptosis pathways. J Cereb Blood Flow Metab. 2005;25:1557–72.

    Article  CAS  PubMed  Google Scholar 

  8. Kett-White R, Hutchinson PJ, Al-Rawi PG, Gupta AK, Pickard JD, Kirkpatrick PJ. Adverse cerebral events detected after subarachnoid hemorrhage using brain oxygen and microdialysis probes. Neurosurgery. 2002;50:1213–22.

    PubMed  Google Scholar 

  9. Zhang C, Jiang M, Wang WQ, Zhao SJ, Yin YX, Mi QJ, Yang MF, Song YQ, Sun BL, Zhang ZY. Selective mGluR1 negative allosteric modulator reduces blood-brain barrier permeability and cerebral edema after experimental subarachnoid hemorrhage. Transl Stroke Res. 2020;11:799–811.

    Article  CAS  PubMed  Google Scholar 

  10. Scharfman HE. The neurobiology of epilepsy. Curr Neurol Neurosci Rep. 2007;7:348–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lv JM, Guo XM, Chen B, Lei Q, Pan YJ, Yang Q. The noncompetitive AMPAR antagonist perampanel abrogates brain endothelial cell permeability in response to ischemia: Involvement of claudin-5. Cell Mol Neurobiol. 2016;36:745–53.

    Article  CAS  PubMed  Google Scholar 

  12. Guo C, Ma YY. Calcium permeable-AMPA receptors and excitotoxicity in neurological disorders. Front Neural Circuits. 2021;15:711564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Suzuki H, Miura Y, Yasuda R, Yago T, Mizutani H, Ichikawa T, Miyazaki T, Kitano Y, Nishikawa H, Kawakita F, Fujimoto M, Toma N. Effects of new-generation antiepileptic drug prophylaxis on delayed neurovascular events after aneurysmal subarachnoid hemorrhage. Transl Stroke Res. 2022. https://doi.org/10.1007/s12975-022-01101-9.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kawakita F, Kanamaru H, Asada R, Imanaka-Yoshida K, Yoshida T, Suzuki H. Inhibition of AMPA (α-Amino-3-Hydroxy-5-Methyl-4-Isoxazole Propionate) receptor reduces acute blood-brain barrier disruption after subarachnoid hemorrhage in mice. Transl Stroke Res. 2022;13:326–37.

    Article  CAS  PubMed  Google Scholar 

  15. Chen T, Zhu J, Wang YH. RNF216 mediates neuronal injury following experimental subarachnoid hemorrhage through the Arc/Arg31-AMPAR pathway. FASEB J. 2020;34:15080–92.

    Article  CAS  PubMed  Google Scholar 

  16. Chen T, Liu WB, Qian X, Xie KL, Wang YH. The AMPAR antagonist perampanel protects the neurovascular unit against traumatic injury via regulating Sirt3. CNS Neurosci Ther. 2021;27:134–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Niu HX, Wang JZ, Wang DL, Miao JJ, Li H, Liu ZG, Yuan X, Liu W, Zhou JR. The orally active noncompetitive AMPAR antagonist perampanel attenuates focal cerebral ischemia injury in rats. Cell Mol Neurobiol. 2018;38:459–66.

    Article  CAS  PubMed  Google Scholar 

  18. Kanamaru H, Kawakita F, Nakano F, Miura Y, Shiba M, Yasuda R, Toma N, Suzuki H, pSEED group. Plasma periostin and delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Neurotherapeutics. 2019;16:480–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tanioka S, Ishida F, Nakano F, Kawakita F, Kanamaru H, Nakatsuka Y, Nishikawa H, Suzuki H, pSEED group. Machine learning analysis of matricellular proteins and clinical variables for early prediction of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Mol Neurobiol. 2019;56:7128–35.

    Article  CAS  PubMed  Google Scholar 

  20. Suzuki H, Nishikawa H, Kawakita F. Matricellular proteins as possible biomarkers for early brain injury after aneurysmal subarachnoid hemorrhage. Neural Regen Res. 2018;13:1175–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu L, Kawakita F, Fujimoto M, Nakano F, Imanaka-Yoshida K, Yoshida T, Suzuki H. Role of periostin in early brain injury after subarachnoid hemorrhage in mice. Stroke. 2017;48:1108–11.

    Article  PubMed  Google Scholar 

  22. Kanamaru H, Kawakita F, Nishikawa H, Nakano F, Asada R, Suzuki H. Clarithromycin ameliorates early brain injury after subarachnoid hemorrhage via suppressing periostin-related pathways in mice. Neurotherapeutics. 2021;18:1880–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Okada T, Kawakita F, Nishikawa H, Nakano F, Liu L, Suzuki H. Selective Toll-like receptor 4 antagonists prevent acute blood-brain barrier disruption after subarachnoid hemorrhage in mice. Mol Neurobiol. 2019;56:976–85.

    Article  CAS  PubMed  Google Scholar 

  24. Kawakita F, Suzuki H. Periostin in cerebrovascular disease. Neural Regen Res. 2020;15:63–4.

    Article  PubMed  Google Scholar 

  25. Kawakita F, Kanamaru H, Asada R, Suzuki H. Potential roles of matricellular proteins in stroke. Exp Neurol. 2019;322:113057.

    Article  CAS  PubMed  Google Scholar 

  26. Liu L, Fujimoto M, Nakano F, Nishikawa H, Okada T, Kawakita F, Imanaka-Yoshida K, Yoshida T, Suzuki H. Deficiency of tenascin-C alleviates neuronal apoptosis and neuroinflammation after experimental subarachnoid hemorrhage in mice. Mol Neurobiol. 2018;55:8346–54.

    Article  CAS  PubMed  Google Scholar 

  27. Nakajima M, Suda S, Sowa K, Sakamoto Y, Nito C, Nishiyama Y, Aoki J, Ueda M, Yokobori S, Yamada M, Yokota H, Okada T, Kimura K. AMPA receptor antagonist perampanel ameliorates post-stroke functional and cognitive impairments. Neuroscience. 2018;386:256–64.

    Article  CAS  PubMed  Google Scholar 

  28. Altay O, Suzuki H, Hasegawa Y, Caner B, Krafft PR, Fujii M, Tang J, Zhang JH. Isoflurane attenuates blood-brain barrier disruption in ipsilateral hemisphere after subarachnoid hemorrhage in mice. Stroke. 2012;43:2513–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. You JC, Muralidharan K, Park JW, Petrof I, Pyfer MS, Corbett BF, LaFrancois JJ, Zheng Y, Zhang X, Mohila CA, Yoshor D, Rissman RA, Nestler EJ, Scharfman HE, Chin J. Epigenetic suppression of hippocampal calbindin-D28k by ΔFosB drives seizure-related cognitive deficits. Nat Med. 2017;23:1377–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bjerrum EJ, Kristensen AS, Pickering DS, Greenwood JR, Nielsen B, Liljefors T, Schousboe A, Bräuner-Osborne H, Madsen U. Design, synthesis, and pharmacology of a highly subtype-selective GluR1/2 agonist, (RS)-2-amino-3-(4-chloro-3-hydroxy-5-isoxazolyl)propionic acid (Cl-HIBO). J Med Chem. 2003;46:2246–9.

    Article  CAS  PubMed  Google Scholar 

  31. Sugawara T, Ayer R, Jadhav V, Zhang JH. A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model. J Neurosci Methods. 2008;167:327–34.

    Article  PubMed  Google Scholar 

  32. Nakano F, Kawakita F, Liu L, Nakatsuka Y, Nishikawa H, Okada T, Kanamaru H, Pak S, Shiba M, Suzuki H. Anti-vasospastic effects of epidermal growth factor receptor inhibitors after subarachnoid hemorrhage in mice. Mol Neurobiol. 2019;56:4730–40.

    Article  CAS  PubMed  Google Scholar 

  33. Hasegawa Y, Suzuki H, Altay O, Zhang JH. Preservation of tropomyosin-related kinase B (TrkB) signaling by sodium orthovanadate attenuates early brain injury after subarachnoid hemorrhage in rats. Stroke. 2011;42:477–83.

    Article  CAS  PubMed  Google Scholar 

  34. Bennett SA, Tenniswood M, Chen JH, Davidson CM, Keyes MT, Fortin T, Pappas BA. Chronic cerebral hypoperfusion elicits neuronal apoptosis and behavioral impairment. NeuroReport. 1998;9:161–6.

    Article  CAS  PubMed  Google Scholar 

  35. Li Y, Lei Z, Xu ZC. Enhancement of inhibitory synaptic transmission in large aspiny neurons after transient cerebral ischemia. Neuroscience. 2009;159:670–81.

    Article  CAS  PubMed  Google Scholar 

  36. Shiba M, Fujimoto M, Imanaka-Yoshida K, Yoshida T, Taki W, Suzuki H. Tenascin-C causes neuronal apoptosis after subarachnoid hemorrhage in rats. Transl Stroke Res. 2014;5:238–47.

    Article  PubMed  Google Scholar 

  37. Eugenin EA, Clements JE, Zink MC, Berman JW. Human immunodeficiency virus infection of human astrocytes disrupts blood-brain barrier integrity by a gap junction-dependent mechanism. J Neurosci. 2011;31:9456–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Short BG, Zimmerman DM, Schwartz LW. Automated double labeling of proliferation and apoptosis in glutathione S-transferase-positive hepatocytes in rats. J Histochem Cytochem. 1997;45:1299–305.

    Article  CAS  PubMed  Google Scholar 

  39. Nakano F, Liu L, Kawakita F, Kanamaru H, Nakatsuka Y, Nishikawa H, Okada T, Shiba M, Suzuki H. Morphological characteristics of neuronal death after experimental subarachnoid hemorrhage in mice using double immunoenzymatic technique. J Histochem Cytochem. 2019;67:919–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Suzuki H, Kawakita F, Asada R, Nakano F, Nishikawa H, Fujimoto M. Old but still hot target, glutamate-mediated neurotoxicity in stroke. Transl Stroke Res. 2022;13:216–7.

    Article  CAS  PubMed  Google Scholar 

  41. Helbok R, Kofler M, Schiefecker AJ, Gaasch M, Rass V, Pfausler B, Beer R, Schmutzhard E. Clinical use of cerebral microdialysis in patients with aneurysmal subarachnoid hemorrhage-State of the art. Front Neurol. 2017;8:565.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Casillas-Espinosa PM, Powell KL, O’Brien TJ. Regulators of synaptic transmission: roles in the pathogenesis and treatment of epilepsy. Epilepsia. 2012;53(Suppl 9):41–58.

    Article  CAS  PubMed  Google Scholar 

  43. Chen Y, Luo C, Zhao M, Li Q, Hu R, Zhang JH, Liu Z, Feng H. Administration of a PTEN inhibitor BPV(pic) attenuates early brain injury via modulating AMPA receptor subunits after subarachnoid hemorrhage in rats. Neurosci Lett. 2015;588:131–6.

    Article  CAS  PubMed  Google Scholar 

  44. Turan N, Miller BA, Huie JR, Heider RA, Wang J, Wali B, Yousuf S, Ferguson AR, Sayeed I, Stein DG, Pradilla G. Effect of progesterone on cerebral vasospasm and neurobehavioral outcomes in a rodent model of subarachnoid hemorrhage. World Neurosurg. 2018;110:e150–9.

    Article  PubMed  Google Scholar 

  45. Doyle KP, Simon RP, Stenzel-Poore MP. Mechanisms of ischemic brain damage. Neuropharmacology. 2008;55:310–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Baranovic J. AMPA receptors in the synapse: very little space and even less time. Neuropharmacology. 2021;196:108711.

    Article  CAS  PubMed  Google Scholar 

  47. Suzuki H. Inflammation: a good research target to improve outcomes of poor-grade subarachnoid hemorrhage. Transl Stroke Res. 2019;10:597–600.

    Article  CAS  PubMed  Google Scholar 

  48. Okada T, Suzuki H. Mechanisms of neuroinflammation and inflammatory mediators involved in brain injury following subarachnoid hemorrhage. Histol Histopathol. 2020;35:623–36.

    CAS  PubMed  Google Scholar 

  49. Chung CL, Wu CH, Huang YH, Wu SC, Chai CY, Tsai HP, Kwan AL. Blocking hepatoma-derived growth factor attenuates vasospasm and neuron cell apoptosis in rats subjected to subarachnoid hemorrhage. Transl Stroke Res. 2022;13:300–10.

    Article  CAS  PubMed  Google Scholar 

  50. Kudo A. Introductory review: Periostin-gene and protein structure. Cell Mol Life Sci. 2017;74:4259–68.

    Article  CAS  PubMed  Google Scholar 

  51. Nishikawa H, Suzuki H. Implications of periostin in the development of subarachnoid hemorrhage-induced brain injuries. Neural Regen Res. 2017;12:1982–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Okada T, Suzuki H. The role of tenascin-C in tissue injury and repair after stroke. Front Immunol. 2021;11:607587.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Shiba M, Suzuki H. Lessons from tenascin-C knockout mice and potential clinical application to subarachnoid hemorrhage. Neural Regen Res. 2019;14:262–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Suzuki H, Fujimoto M, Kawakita F, Liu L, Nakatsuka Y, Nakano F, Nishikawa H, Okada T, Kanamaru H, Imanaka-Yoshida K, Yoshida T, Shiba M. Tenascin-C in brain injuries and edema after subarachnoid hemorrhage: findings from basic and clinical studies. J Neurosci Res. 2020;98:42–56.

    Article  CAS  PubMed  Google Scholar 

  55. Kondziella D, Friberg CK, Wellwood I, Reiffurth C, Fabricius M, Dreier JP. Continuous EEG monitoring in aneurysmal subarachnoid hemorrhage: a systematic review. Neurocrit Care. 2015;22:450–61.

    Article  CAS  PubMed  Google Scholar 

  56. Rogawski MA, Hanada T. Preclinical pharmacology of perampanel, a selective non-competitive AMPA receptor antagonist. Acta Neurol Scand Suppl. 2013;197:19–24.

    Article  Google Scholar 

  57. Suzuki H, Nakano F. To improve translational research in subarachnoid hemorrhage. Transl Stroke Res. 2018;9:1–3.

    Article  PubMed  Google Scholar 

  58. Navarro KL, Huss M, Smith JC, Sharp P, Marx JO, Pacharinsak C. Mouse anesthesia: the art and science. ILAR J. 2021;62:238–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ms. Chiduru Yamamoto-Nakamura (Department of Neurosurgery, Mie University Graduate School of Medicine) for her technical assistance.

Funding

This work was funded by JSPS KAKENHI Grant Number JP20K17963 and Sanikai Foundation (Grant Number, N/A) to Dr. Kawakita, and Taiju Life Social Welfare Foundation (Grant Number, N/A) to Dr. Suzuki.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and design, F.K. and H.S.; methodology, material preparation, data collection and analyses, F.K., F.N., H.K., R.A. and H.S.; writing—original draft preparation, F.K.; writing—review and editing, F.N., H.K., R.A., and H.S. All authors approved the final version.

Corresponding author

Correspondence to Hidenori Suzuki.

Ethics declarations

Ethics Approval

All experiments in the present study were approved by the Animal Ethics Review Committee of Mie University.

Competing Interests

Dr. Suzuki is one of the Editorial Board Members in this journal, and reported personal fees from Eisai and Kowa, and a research fund from Japan Blood Products Organization outside the submitted work. The other authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 16936 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawakita, F., Nakano, F., Kanamaru, H. et al. Anti-Apoptotic Effects of AMPA Receptor Antagonist Perampanel in Early Brain Injury After Subarachnoid Hemorrhage in Mice. Transl. Stroke Res. 15, 462–475 (2024). https://doi.org/10.1007/s12975-023-01138-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-023-01138-4

Keywords

Navigation