Skip to main content

Advertisement

Log in

Neuroprotection of NSC Therapy is Superior to Glibenclamide in Cardiac Arrest-Induced Brain Injury via Neuroinflammation Regulation

  • Research
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Cardiac arrest (CA) is common and devastating, and neuroprotective therapies for brain injury after CA remain limited. Neuroinflammation has been a target for two promising but underdeveloped post-CA therapies: neural stem cell (NSC) engrafting and glibenclamide (GBC). It is critical to understand whether one therapy has superior efficacy over the other and to further understand their immunomodulatory mechanisms. In this study, we aimed to evaluate and compare the therapeutic effects of NSC and GBC therapies post-CA. In in vitro studies, BV2 cells underwent oxygen–glucose deprivation (OGD) for three hours and were then treated with GBC or co-cultured with human NSCs (hNSCs). Microglial polarization phenotype and TLR4/NLRP3 inflammatory pathway proteins were detected by immunofluorescence staining. Twenty-four Wistar rats were randomly assigned to three groups (control, GBC, and hNSCs, N = 8/group). After 8 min of asphyxial CA, GBC was injected intraperitoneally or hNSCs were administered intranasally in the treatment groups. Neurological-deficit scores (NDSs) were assessed at 24, 48, and 72 h after return of spontaneous circulation (ROSC). Immunofluorescence was used to track hNSCs and quantitatively evaluate microglial activation subtype and polarization. The expression of TLR4/NLRP3 pathway-related proteins was quantified via Western blot. The in vitro studies showed the highest proportion of activated BV2 cells with an increased expression of TLR4/NLRP3 signaling proteins were found in the OGD group compared to OGD + GBC and OGD + hNSCs groups. NDS showed significant improvement after CA in hNSC and GBC groups compared to controls, and hNSC treatment was superior to GBC treatment. The hNSC group had more inactive morphology and anti-inflammatory phenotype of microglia. The quantified expression of TLR4/NLRP3 pathway-related proteins was significantly suppressed by both treatments, and the suppression was more significant in the hNSC group compared to the GBC group. hNSC and GBC therapy regulate microglial activation and the neuroinflammatory response in the brain after CA through TLR4/NLRP3 signaling and exert multiple neuroprotective effects, including improved neurological function and shortened time of severe neurological deficit. In addition, hNSCs displayed superior inflammatory regulation over GBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data supporting the conclusions of this manuscript are provided in the text and figures. Please contact the author for data requests.

Abbreviations

NSC:

Neural stem cell

CA:

Cardiac arrest

GBC:

Glibenclamide

OGD:

Oxygen–glucose deprivation

OGD/R:

Oxygen-glucose deprivation and re-oxygenation

hNSCs:

Human NSCs

TLR4:

Toll-like receptor 4

NLRP3:

NLR pyrin domain containing 3

NDS:

Neurological-deficit scores

ROSC:

Return of spontaneous circulation

AD:

Alzheimer's disease

DMEM:

Dulbecco's modified Eagle medium

bFGF:

Basic fibroblast growth factor

EGF:

Epidermal growth factor

FBS:

Fetal bovine serum

CPR:

Cardiopulmonary resuscitation

MAP:

Mean arterial pressure

ABG:

Arterial blood gas

ECG:

Electrocardiogram

EEG:

Electroencephalogram

DMSO:

Dimethyl sulfoxide

qEEG-IQ:

Quantitative EEG-information quantity

lac:

Blood lactic acid

SND:

Severe neurological deficit

PFA:

Paraformaldehyde

HDS:

Histopathological damage scoring

BSA:

Bovine serum albumin

RIPA:

Radioimmunoprecipitation assay

PMSF:

Phenylmethanesulfonyl fluoride

SDS-PAGE:

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis

PVDF:

Polyvinylidene fluoride membrane

ECL:

Enhanced chemiluminescence

A. U.:

Arbitrary units

TTM:

Targeted temperature management

ICUs:

Intensive care units

IntDen:

Integrated density

LOS:

Length of stay

ROS:

Reactive oxygen species

ROSC:

Return of spontaneous circulation

RNS:

Reactive nitrogen species

References

  1. Benjamin EJ, et al. Heart Disease and Stroke Statistics-2018 Update: A Report From the American Heart Association. Circulation. 2018;137(12):e67–492.

    Article  PubMed  Google Scholar 

  2. Caro-Codón J, et al. Long-term neurological outcomes in out-of-hospital cardiac arrest patients treated with targeted-temperature management. Resuscitation. 2018;133:33–9.

    Article  PubMed  Google Scholar 

  3. Verberne D, et al. Factors predicting quality of life and societal participation after survival of a cardiac arrest: A prognostic longitudinal cohort study. Resuscitation. 2018;123:51–7.

    Article  PubMed  Google Scholar 

  4. Jayaraj RL, et al. Neuroinflammation: friend and foe for ischemic stroke. J Neuroinflammation. 2019;16(1):142.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Patel AR, et al. Microglia and ischemic stroke: a double-edged sword. Int J Physiol Pathophysiol Pharmacol. 2013;5(2):73–90.

    PubMed  PubMed Central  Google Scholar 

  6. Skaper SD, et al. An Inflammation-Centric View of Neurological Disease: Beyond the Neuron. Front Cell Neurosci. 2018;12:72.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lee D, et al. Oximetry-Guided normoxic resuscitation following canine cardiac arrest reduces cerebellar Purkinje neuronal damage. Resuscitation. 2019;140:23–8.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tae HJ, et al. Neuronal injury and tumor necrosis factor-alpha immunoreactivity in the rat hippocampus in the early period of asphyxia-induced cardiac arrest under normothermia. Neural Regen Res. 2017;12(12):2007–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boese AC, et al. Neural stem cell therapy for subacute and chronic ischemic stroke. Stem Cell Res Ther. 2018;9(1):154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang Z, et al. Intracerebroventricular Administration of hNSCs Improves Neurological Recovery after Cardiac Arrest in Rats. 2020.

  11. Zweckberger K, et al. Glibenclamide reduces secondary brain damage after experimental traumatic brain injury. Neuroscience. 2014;272:199–206.

    Article  CAS  PubMed  Google Scholar 

  12. Simard JM, et al. Glibenclamide-10-h Treatment Window in a Clinically Relevant Model of Stroke. Transl Stroke Res. 2012;3(2):286–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang K, et al. Glibenclamide Prevents Water Diffusion Abnormality in the Brain After Cardiac Arrest in Rats. Neurocrit Care. 2018;29(1):128–35.

    Article  CAS  PubMed  Google Scholar 

  14. Janeway CA Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20:197–216.

    Article  CAS  PubMed  Google Scholar 

  15. Dinarello CA. A clinical perspective of IL-1beta as the gatekeeper of inflammation. Eur J Immunol. 2011;41(5):1203–17.

    Article  CAS  PubMed  Google Scholar 

  16. de RiveroVaccari JP, Dietrich WD, Keane RW. Activation and regulation of cellular inflammasomes: gaps in our knowledge for central nervous system injury. J Cereb Blood Flow Metab. 2014;34(3):369–75.

    Article  Google Scholar 

  17. Halle A, et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol. 2008;9(8):857–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Duewell P, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010;464(7293):1357–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Legrand-Poels S, et al. Free fatty acids as modulators of the NLRP3 inflammasome in obesity/type 2 diabetes. Biochem Pharmacol. 2014;92(1):131–41.

    Article  CAS  PubMed  Google Scholar 

  20. Fann DY, et al. Pathogenesis of acute stroke and the role of inflammasomes. Ageing Res Rev. 2013;12(4):941–66.

    Article  CAS  PubMed  Google Scholar 

  21. Pradillo JM, et al. Delayed administration of interleukin-1 receptor antagonist reduces ischemic brain damage and inflammation in comorbid rats. J Cereb Blood Flow Metab. 2012;32(9):1810–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Takahashi M. NLRP3 in myocardial ischaemia-reperfusion injury: inflammasome-dependent or -independent role in different cell types. Cardiovasc Res. 2013;99(1):4–5.

    Article  CAS  PubMed  Google Scholar 

  23. Qian A, et al. Hypothermia Inhibits Cerebral Necroptosis and NOD-Like Receptor Pyrin Domain Containing 3 Pathway in a Swine Model of Cardiac Arrest. J Surg Res. 2019;244:468–76.

    Article  CAS  PubMed  Google Scholar 

  24. Lamkanfi M, et al. Glyburide inhibits the Cryopyrin/Nalp3 inflammasome. J Cell Biol. 2009;187(1):61–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chan EWL, et al. The NLRP3 inflammasome is involved in the neuroprotective mechanism of neural stem cells against microglia-mediated toxicity in SH-SY5Y cells via the attenuation of tau hyperphosphorylation and amyloidogenesis. Neurotoxicology. 2019;70:91–8.

    Article  CAS  PubMed  Google Scholar 

  26. Li X, et al. Nanoparticle-mediated transcriptional modification enhances neuronal differentiation of human neural stem cells following transplantation in rat brain. Biomaterials. 2016;84:157–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu F, Shen G, Su Z. Glibenclamide ameliorates the disrupted blood-brain barrier in experimental intracerebral hemorrhage by inhibiting the activation of NLRP3 inflammasome. 2019. 9(4): p. e01254.

  28. Jaber SM, et al. Sex differences in the mitochondrial bioenergetics of astrocytes but not microglia at a physiologically relevant brain oxygen tension. Neurochem Int. 2018;117:82–90.

    Article  CAS  PubMed  Google Scholar 

  29. Jia X, et al. Quantitative EEG and neurological recovery with therapeutic hypothermia after asphyxial cardiac arrest in rats. Brain Res. 2006;1111(1):166–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jia X, et al. Early electrophysiologic markers predict functional outcome associated with temperature manipulation after cardiac arrest in rats. Crit Care Med. 2008;36(6):1909–16.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Donnino MW, et al. Initial lactate and lactate change in post-cardiac arrest: a multicenter validation study. Crit Care Med. 2014;42(8):1804–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jia X, et al. Improving neurological outcomes post-cardiac arrest in a rat model: immediate hypothermia and quantitative EEG monitoring. Resuscitation. 2008;76(3):431–42.

    Article  PubMed  Google Scholar 

  33. Wang Z, et al. Intracerebroventricular Administration of Neural Stem Cells after Cardiac Arrest. Annu Int Conf IEEE Eng Med Biol Soc. 2019;2019:4213–6.

    PubMed  Google Scholar 

  34. Cunningham CL, Martinez-Cerdeno V, Noctor SC. Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J Neurosci. 2013;33(10):4216–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tang Y, Le W. Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases. Mol Neurobiol. 2016;53(2):1181–94.

    Article  CAS  PubMed  Google Scholar 

  36. Ley K. M1 Means Kill; M2 Means Heal. J Immunol. 2017;199(7):2191–3.

    Article  CAS  PubMed  Google Scholar 

  37. Battelli MG, et al. Ricin toxicity to microglial and monocytic cells. Neurochem Int. 2001;39(2):83–93.

    Article  CAS  PubMed  Google Scholar 

  38. Zimmer H, Riese S, Régnier-Vigouroux A. Functional characterization of mannose receptor expressed by immunocompetent mouse microglia. Glia. 2003;42(1):89–100.

    Article  PubMed  Google Scholar 

  39. Du J, et al. Optimal electrical stimulation boosts stem cell therapy in nerve regeneration. Biomaterials. 2018;181:347–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tschoe C, et al. Neuroinflammation after Intracerebral Hemorrhage and Potential Therapeutic Targets. J Stroke. 2020;22(1):29–46.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sanchez-Guajardo V, et al. Microglia acquire distinct activation profiles depending on the degree of alpha-synuclein neuropathology in a rAAV based model of Parkinson’s disease. PLoS ONE. 2010;5(1):e8784.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Parada E, et al. Early toll-like receptor 4 blockade reduces ROS and inflammation triggered by microglial pro-inflammatory phenotype in rodent and human brain ischaemia models. 2019. 176(15): p. 2764–2779.

  43. Tschopp J, Schroder K. NLRP3 inflammasome activation: The convergence of multiple signalling pathways on ROS production? Nat Rev Immunol. 2010;10(3):210–5.

    Article  CAS  PubMed  Google Scholar 

  44. He Y, Hara H, Núñez G. Mechanism and Regulation of NLRP3 Inflammasome Activation. Trends Biochem Sci. 2016;41(12):1012–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Huang L, Zhang L. Neural stem cell therapies and hypoxic-ischemic brain injury. Prog Neurobiol, 2018.

  46. Dabrowski A, Robinson TJ, Felling RJ. Promoting Brain Repair and Regeneration After Stroke: a Plea for Cell-Based Therapies. Curr Neurol Neurosci Rep. 2019;19(1):5.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lyu J, et al. Microglial Responses to Brain Injury and Disease: Functional Diversity and New Opportunities. 2020.

  48. Coppack SW, et al. Pharmacokinetic and pharmacodynamic studies of glibenclamide in non-insulin dependent diabetes mellitus. Br J Clin Pharmacol. 1990;29(6):673–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Simard JM, et al. Key role of sulfonylurea receptor 1 in progressive secondary hemorrhage after brain contusion. J Neurotrauma. 2009;26(12):2257–67.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Patel AD, et al. Glibenclamide reduces hippocampal injury and preserves rapid spatial learning in a model of traumatic brain injury. J Neuropathol Exp Neurol. 2010;69(12):1177–90.

    Article  CAS  PubMed  Google Scholar 

  51. Jha RM, Bell J, Citerio G. Role of Sulfonylurea Receptor 1 and Glibenclamide in Traumatic Brain Injury: A Review of the Evidence. 2020. 21(2).

  52. Lefrant JY, et al. The daily cost of ICU patients: A micro-costing study in 23 French Intensive Care Units. Anaesth Crit Care Pain Med. 2015;34(3):151–7.

    Article  PubMed  Google Scholar 

  53. Kopach O. Monitoring maturation of neural stem cell grafts within a host microenvironment. World J Stem Cells. 2019;11(11):982–9.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wang Z, Mascarenhas C, Jia X. Positron Emission Tomography After Ischemic Brain Injury: Current Challenges and Future Developments. 2020;11(4):628–42.

    CAS  Google Scholar 

  55. Hao L, et al. Stem cell-based therapies for ischemic stroke. Biomed Res Int. 2014;2014:468748.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Taylor RA, Sansing LH. Microglial responses after ischemic stroke and intracerebral hemorrhage. Clin Dev Immunol. 2013;2013:746068.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Rawlinson C et al. Post-Ischaemic Immunological Response in the Brain: Targeting Microglia in Ischaemic Stroke Therapy. Brain Sci, 2020. 10(3).

  58. Lachance BB, Wang Z, Badjatia N, Jia X. The effect of Glibenclamide on somatosensory evoked potentials after cardiac arrest in rats. Neurocrit Care. 2022;36(2):612–20.

    Article  CAS  PubMed  Google Scholar 

  59. Yang X, Wang Z, Jia X. Neuroprotection of Glibenclamide against Brain Injury after Cardiac Arrest via Modulation of NLRP3 Inflammasome. Conf Proc IEEE Eng Med Biol Soc. 2019;2019:4209–12.

    PubMed Central  Google Scholar 

  60. Ji G, et al. NF-kappaB Signaling is Involved in the Effects of Intranasally Engrafted Human Neural Stem Cells on Neurofunctional Improvements in Neonatal Rat Hypoxic-Ischemic Encephalopathy. CNS Neurosci Ther. 2015;21(12):926–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sun J, et al. Intranasal delivery of hypoxia-preconditioned bone marrow-derived mesenchymal stem cells enhanced regenerative effects after intracerebral hemorrhagic stroke in mice. Exp Neurol. 2015;272:78–87.

    Article  CAS  PubMed  Google Scholar 

  62. Bagheri-Mohammadi S, et al. Intranasal administration of endometrial mesenchymal stem cells as a suitable approach for Parkinson’s disease therapy. 2019;46(4):4293–302.

    CAS  Google Scholar 

Download references

Acknowledgements

N/A

Funding

This work was partially supported by R01HL118084, R01NS110387, RO1NS125232 from the United States National Institute of Health (all to Xiaofeng Jia). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

Zhuoran Wang performed the in vivo study and related in vitro study, analyzed the data and wrote the manuscript; Shuai Zhang performed and analyzed the cellular study; Jian Du prepared neural stem cells; Songyu Chen assisted with in vitro studies; Brian Polster provided critical appraisal in the cellular model; Zhuoran Wang, Brittany Bolduc Lachance, and Xiaofeng Jia revised the manuscript; Xiaofeng Jia conceived the original idea, designed the experiments, and finalized the manuscript. The authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiaofeng Jia.

Ethics declarations

Ethics approval

All protocols were approved by the Institutional Animal Care and Use Committee (IACUC) of the University of Maryland, Baltimore.

Human and Animal Ethics

All rats were maintained following NIH guidelines for the humane care of animals.

Consent for publication

All authors have approved and given the content for the publication.

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Presented, in part, at the Society of Critical Care Medicine’s 50th Critical Care Congress with Star Research Achievement Award in Jan 2021.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhang, S., Du, J. et al. Neuroprotection of NSC Therapy is Superior to Glibenclamide in Cardiac Arrest-Induced Brain Injury via Neuroinflammation Regulation. Transl. Stroke Res. 14, 723–739 (2023). https://doi.org/10.1007/s12975-022-01047-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-022-01047-y

Keywords

Navigation