Skip to main content

Advertisement

Log in

Therapeutic Induction of Collateral Flow

  • Review Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Therapeutic induction of collateral flow as a means to salvage tissue and improve outcome from acute ischemic stroke is a promising approach in the era in which endovascular therapy is no longer time-dependent but collateral-dependent. The importance of collateral flow enhancement as a therapeutic for acute ischemic stroke extends beyond those patients with large amounts of salvageable tissue. It also has the potential to extend the time window for reperfusion therapies in patients who are ineligible for endovascular thrombectomy. In addition, collateral enhancement may be an important adjuvant to neuroprotective agents by providing a more robust vascular route for which treatments can gain access to at risk tissue. However, our understanding of collateral hemodynamics, including under comorbid conditions that are highly prevalent in the stroke population, has hindered the efficacy of collateral flow augmentation for improving stroke outcome in the clinical setting. This review will discuss our current understanding of pial collateral function and hemodynamics, including vasoactivity that is critical for enhancing penumbral perfusion. In addition, mechanisms by which collateral flow can be increased during acute ischemic stroke to limit ischemic injury, that may be different depending on the state of the brain and vasculature prior to stroke, will also be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced from Li Z et al., Am J Physiol 2018;315:H1703-H1712

Fig. 2

Reproduced from Chan et al. Stroke 2016;47:1618–1625; Open-access CC BY-NC-ND 4.0 B) Active myogenic vasoconstriction of LMAs and non-LMAs from 18-week-old normotensive WKY rats. *P < 0.05 vs. LMA. C) Myogenic tone of LMA and non-LMAs from 18-week-old WKY rats. *P < 0.05 vs. LMA. Reproduced from Cipolla MJ. Stroke 2021;52:2465–2477

Fig. 3
Fig. 4

Reproduced from Cipolla et al., J Cerebr Blood Flow Metab. 2018;38:755–766. (B) Graph showing % change in collateral flow calculated from filament insertion in normotensive Wistar and hypertensive SHR rats. Collateral flow increased in response to MCAO in Wistar but not SHR. Data will be made available upon reasonable request

Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Murray CJ, Lopez AD. Measuring the global burden of disease. N Engl J Med. 2013;369:448–57.

    Article  CAS  Google Scholar 

  2. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2095–128.

    Article  Google Scholar 

  3. Lima FO, Furie KL, Silva GS, Lev MH, Camargo EC, Singhal AB, et al. Prognosis of untreated strokes due to anterior circulation proximal intracranial arterial occlusions detected by use of computed tomography angiography. JAMA Neurol. 2014;71:151–7.

    Article  CAS  Google Scholar 

  4. Chen CJ, Ding D, Starke RM, Mehndiratta P, Crowley RW, Liu KC, et al. Endovascular vs medical management of acute ischemic stroke. Neurology. 2015;85:1980–90.

    Article  Google Scholar 

  5. Astrup J, Siesjo BK, Symon L. Thresholds in cerebral ischemia – the ischemic penumbra. Stroke. 1981;12:723–5.

    Article  CAS  Google Scholar 

  6. Jung S, Gilgen M, Slotboom J, et al. Factors that determine penumbral tissue loss in acute ischaemic stroke. Brain. 2013;136:3554–60.

    Article  Google Scholar 

  7. Winship IR, Armitage GA, Ramakrishnan G, et al. Augmenting collateral blood flow during ischemic stroke via transient aortic occlusion. J Cereb Blood Flow Metab. 2014;34:61–71.

    Article  Google Scholar 

  8. Albers GW, et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med. 2018;378:708–18.

    Article  Google Scholar 

  9. Nogueira RG, et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med. 2018;378:11–21.

    Article  Google Scholar 

  10. Schaefer PW, Barak ER, Kamalian S, Gharai LR, Schwamm L, Gonzalez RG, et al. Quantitative assessment of core/penumbra mismatch in acute stroke: CT and MR perfusion imaging are strongly correlated when sufficient brain volume is imaged. Stroke. 2008;39:2986–92.

    Article  Google Scholar 

  11. Yoo AJ, Chaudhry ZA, Nogueira RG, Lev MH, Schaefer PW, Schwamm LH, et al. Infarct volume is a pivotal biomarker after intra-arterial stroke therapy. Stroke. 2012;43:1323–30.

    Article  CAS  Google Scholar 

  12. Barh Hosseini M, Woolf G, Sharma LK, Hinman JD, Rao NM, Yoo B, Jahan R, Starkman S, Nour M, Raychev R, et al. The Frequency of Substantial Salvageable Penumbra in Thrombectomy-ineligible Patients with Acute Stroke. J Neuroimaging. 2018;28:676–682.

  13. Faber JE, Storz JF, Cheviron ZA, Zhang H. High-altitude rodents have abundant collaterals that protect against tissue injury after cerebral, coronary and peripheral artery occlusion. J Cereb Blood Flow Metab. 2020;41:731–44.

    Article  Google Scholar 

  14. Toriumi H, Tatarishvili J, Tomita M, et al. Dually supplied T-junctions in arteriolo-arteriolar anastomosis in mice: key to local hemodynamic homeostasis in normal and ischemic states? Stroke. 2009;40:3378–83.

    Article  Google Scholar 

  15. Chalothorn D, Faber JE. Formation and maturation or the murine native cerebral collateral circulation. J Molec Cell Cardiol. 2010;49:251–9.

    Article  CAS  Google Scholar 

  16. Brozici M, van der Zwan A, Hillen B. Anatomy and functionality of leptomeningeal anastomoses: a review. Stroke. 2003;34:2750–62.

    Article  Google Scholar 

  17. Liebeskind DS. Collaterals in acute stroke: beyond the clot. Neuroimaging Clin N Am. 2005;15:553–73.

    Article  Google Scholar 

  18. Hossmann KA. Pathophysiology and therapy of experimental stroke. Cell Mol Neurobiol. 2006;26:1057–83.

    Article  Google Scholar 

  19. Zhang H, Prabhakar P, Sealock R, Faber JE. Wide genetic variation in the native pial collateral circulation is a major determinant of variation in severity of stroke. J Cereb Blood Flow Metab. 2010;30:923–34.

    Article  CAS  Google Scholar 

  20. Li Z, Cipolla MJ. Mechanisms of Flow-Mediated Dilation of Pial Collaterals and the Effect of Hypertension. Hypertension. 2022;79:457–67.

    Article  CAS  Google Scholar 

  21. Chan SL, Sweet JG, Bishop N, Cipolla MJ. Pial Collateral Reactivity During Hypertension and Aging: Understanding the Function of Collaterals for Stroke Therapy. Stroke. 2016;47:1618–25.

    Article  Google Scholar 

  22. Cipolla MJ, Liebeskind DS, Chan SL. The importance of comorbidities in ischemic stroke: Impact of hypertension on the cerebral circulation. J Cereb Blood Flow Metab. 2018;38:2129–49.

    Article  Google Scholar 

  23. Petrie JR, Guzik TJ, Touyz RM. Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms. Can J Cardiol. 2018;34:575–84.

    Article  Google Scholar 

  24. De Meyer GR, Herman AG. Vascular endothelial dysfunction. Prog Cardiovasc Dis. 1997;39:325–42.

    Article  Google Scholar 

  25. Wheeler EC, Brenner ZR. Peripheral vascular anatomy, physiology, and pathophysiology. AACN Clin Issues. 1995;6:505–14.

    Article  CAS  Google Scholar 

  26. Murtha LA, McLeod DD, Pepperall D, McCann SK, Beard DJ, Tomkins AJ, Holmes WM, McCabe C, Macrae IM, Spratt NJ. Intracranial pressure elevation after ischemic stroke in rats: cerebral edema is not the only cause, and short-duration mild hypothermia is a highly effective preventive therapy. J Cereb Blood Flow Metab. 2015;35:592–600 (Erratum in: J Cereb Blood Flow Metab. 2015;35:2109).

    Article  Google Scholar 

  27. Li Z, Lindner DP, Bishop NM, Cipolla MJ. ACE (Angiotensin-Converting Enzyme) Inhibition Reverses Vasoconstriction and Impaired Dilation of Pial Collaterals in Chronic Hypertension. Hypertension. 2020;76:226–35.

    Article  CAS  Google Scholar 

  28. Cipolla MJ, Chan SL. Impact of Acute and Chronic Hypertension on Changes in Pial Collateral Tone In Vivo During Transient Ischemia. Hypertension. 2020;76:1019–26.

    Article  CAS  Google Scholar 

  29. McCabe C, Gallagher L, Gsell W, Graham D, Dominiczak AF, Macrae IM. Differences in the evolution of the ischemic penumbra in stroke-prone spontaneously hypertensive and Wistar-Kyoto rats. Stroke. 2009;40:3864–8.

    Article  Google Scholar 

  30. Tsivgoulis G, Katsanos AH, Sharma VK, Krogias C, Mikulik R, Vadikolias K, Mijajlovic M, Safouris A, Zompola C, Faissner S, Weiss V, Giannopoulos S, Vasdekis S, Boviatsis E, Alexandrov AW, Voumvourakis K, Alexandrov AV. Statin pretreatment is associated with better outcomes in large artery atherosclerotic stroke. Neurology. 2016;86:1103–11.

    Article  CAS  Google Scholar 

  31. Sargento-Freitas J, Pagola J, Rubiera M, Flores A, Silva F, Rodriguez-Luna D, Pineiro S, Alvarez-Sabín J, Molina CA, Ribo M. Preferential effect of premorbid statins on atherothrombotic strokes through collateral circulation enhancement. Eur Neurol. 2012;68:171–6.

    Article  CAS  Google Scholar 

  32. Safouris A, Katsanos AH, Kerasnoudis A, Krogias C, Kinsella JA, Sztajzel R, Lambadiari V, Deftereos S, Kargiotis O, Sharma VK, Demchuk AM, Saqqur M, McCabe DJH, Tsivgoulis G. Statin Pretreatment and Microembolic Signals in Large Artery Atherosclerosis. Stroke. 2018;49:1992–5.

    Article  CAS  Google Scholar 

  33. Ovbiagele B, Saver JL, Starkman S, Kim D, Ali LK, Jahan R, Duckwiler GR, Viñuela F, Pineda S, Liebeskind DS. Statin enhancement of collateralization in acute stroke. Neurology. 2007;68:2129–31.

    Article  CAS  Google Scholar 

  34. Lee MJ, Bang OY, Kim SJ, Kim GM, Chung CS, Lee KH, Ovbiagele B, Liebeskind DS, Saver JL. Role of statin in atrial fibrillation-related stroke: an angiographic study for collateral flow. Cerebrovasc Dis. 2014;37:77–84.

    Article  CAS  Google Scholar 

  35. Liebeskind DS, Tomsick TA, Foster LD, Yeatts SD, Carrozzella J, Demchuk AM, Jovin TG, Khatri P, von Kummer R, Sugg RM, Zaidat OO, Hussain SI, Goyal M, Menon BK, Al Ali F, Yan B, Palesch YY, Broderick JP, IMS III Investigators. Collaterals at angiography and outcomes in the Interventional Management of Stroke (IMS) III trial. Stroke. 2014;45:759–64.

    Article  CAS  Google Scholar 

  36. Malhotra K, Safouris A, Goyal N, Arthur A, Liebeskind DS, Katsanos AH, Sargento-Freitas J, Ribo M, Molina C, Chung JW, Bang OY, Magoufis G, Cheema A, Shook SJ, Uchino K, Alexandrov AV, Tsivgoulis G. Association of statin pretreatment with collateral circulation and final infarct volume in acute ischemic stroke patients: A meta-analysis. Atherosclerosis. 2019;282:75–9.

    Article  CAS  Google Scholar 

  37. Giannopoulos S, Katsanos AH, Tsivgoulis G, Marshall RS. Statins and cerebral hemodynamics. J Cereb Blood Flow Metab. 2012;32:1973–6.

    Article  CAS  Google Scholar 

  38. Asahi M, Huang Z, Thomas S, Yoshimura S, Sumii T, Mori T, Qiu J, Amin-Hanjani S, Huang PL, Liao JK, Lo EH, Moskowitz MA. Protective effects of statins involving both eNOS and tPA in focal cerebral ischemia. J Cereb Blood Flow Metab. 2005;25:722–9.

    Article  CAS  Google Scholar 

  39. Oesterle A, Liao JK. The Pleiotropic Effects of Statins - From Coronary Artery Disease and Stroke to Atrial Fibrillation and Ventricular Tachyarrhythmia. Curr Vasc Pharmacol. 2019;7:222–32.

    Article  Google Scholar 

  40. Letourneur A, Roussel S, Toutain J, et al. Impact of genetic and renovascular chronic arterial hypertension on the acute spatiotemporal evolution of the ischemic penumbra: A sequential study with MRI in the rat. J Cereb Blood Flow Metab. 2011;31:504–13.

    Article  Google Scholar 

  41. McCabe C, Gallagher L, Gsell W, et al. Differences in the evolution of the ischemic penumbra in stroke-prone spontaneously hypertensive and Wistar-Kyoto rats. Stroke. 2009;40:3864–8.

    Article  Google Scholar 

  42. Cipolla MJ, Sweet JG, Chan S-L. Effect of hypertension and peroxynitrite decomposition with FeTMPyP on CBF and stroke outcome. J Cerebr Blood Flow Metab. 2017;37:1276–85.

    Article  CAS  Google Scholar 

  43. Barone FC, Clark RK, Feuerstein G, et al. Quantitative comparison of magnetic resonance imaging (MRI) and histologic analyses of focal ischemic damage in the rat. Brain Res Bull. 1991;26:285–91.

    Article  CAS  Google Scholar 

  44. Kang BT, Leoni RF, Silva AC. Impaired CBF regulation and high CBF threshold contribute to the increased sensitivity of spontaneously hypertensive rats to cerebral ischemia. Neuroscience. 2014;69:223–31.

    Article  Google Scholar 

  45. Dogan A, Baskaya MK, Rao VL, et al. Intraluminal suture occlusion of the middle cerebral artery in spontaneously hypertensive rats. Neurol Res. 1998;20:265–70.

    Article  CAS  Google Scholar 

  46. Fujita K, Tanaka K, Yamagami H, Ide T, Ishiyama H, Sonoda K, Satow T, Takahashi JC, Ihara M, Koga M, Yokota T, Toyoda K. Detrimental Effect of Chronic Hypertension on Leptomeningeal Collateral Flow in Acute Ischemic Stroke. Stroke. 2019;50:1751–7.

    Article  CAS  Google Scholar 

  47. Nishijima Y, Akamatsu Y, Yang SY, Lee CC, Baran U, Song S, Wang RK, Tominaga T, Liu J. Impaired Collateral Flow Compensation During Chronic Cerebral Hypoperfusion in the Type 2 Diabetic Mice. Stroke. 2016;47:3014–21.

    Article  Google Scholar 

  48. Menon BK, Smith EE, Coutts SB, Welsh DG, Faber JE, Goyal M, Hill MD, Demchuk AM, Damani Z, Cho KH, Chang HW, Hong JH, Sohn SI. Leptomeningeal collaterals are associated with modifiable metabolic risk factors. Ann Neurol. 2013;74:241–8.

    CAS  Google Scholar 

  49. Akamatsu Y, Nishijima Y, Lee CC, Yang SY, Shi L, An L, Wang RK, Tominaga T, Liu J. Impaired leptomeningeal collateral flow contributes to the poor outcome following experimental stroke in the Type 2 diabetic mice. J Neurosci. 2015;35:3851–64.

    Article  CAS  Google Scholar 

  50. Nishijima Y, Akamatsu Y, Weinstein PR, Liu J. Collaterals: Implications in cerebral ischemic diseases and therapeutic interventions. Brain Res. 2015;1623:18–29.

    Article  CAS  Google Scholar 

  51. Wiegers EJA, Mulder MJHL, Jansen IGH, Venema E, Compagne KCJ, Berkhemer OA, Emmer BJ, Marquering HA, van Es ACGM, Sprengers ME, van Zwam WH, van Oostenbrugge RJ, Roos YBWEM, Majoie CBLM, Roozenbeek B, Lingsma HF, Dippel DWJ, van der Lugt A, MR CLEAN Trial and MR CLEAN Registry Investigators. Clinical and Imaging Determinants of Collateral Status in Patients With Acute Ischemic Stroke in MR CLEAN Trial and Registry. Stroke. 2020;51:1493–502.

    Article  Google Scholar 

  52. Ma J, Ma Y, Shuaib A, Winship IR. Impaired collateral flow in pial arterioles of aged rats during ischemic Stroke. Transl Stroke Res. 2020;11:243–53.

    Article  CAS  Google Scholar 

  53. Lin MP, Brott TG, Liebeskind DS, Meschia JF, Sam K, Gottesman RF. Collateral recruitment is impaired by cerebral small vessel disease. Stroke. 2020;51:1404–2141.

    Article  Google Scholar 

  54. Klaus JA, Kibler KK, Abuchowski A, Koehler RC. Early treatment of transient focal cerebral ischemia with bovine PEGylated carboxy hemoglobin transfusion. Artif Cells Blood Substit Immobil Biotechnol. 2010;38:223–9.

    Article  CAS  Google Scholar 

  55. Motterlini R. Carbon monoxide-releasing molecules (CO-RMs): vasodilatory, anti-ischaemic and anti-inflammatory activities. Biochem Soc Trans. 2007;35:1142–6.

    Article  CAS  Google Scholar 

  56. Zhang J, Cao S, Kwansa H, Crafa D, Kibler KK, Koehler RC. Transfusion of hemoglobin-based oxygen carriers in the carboxy state is beneficial during transient focal cerebral ischemia. J Appl Physiol. 1985;2012(113):1709–17.

    Google Scholar 

  57. Cipolla MJ, Linfante I, Abuchowski A, Jubin R, Chan SL. Pharmacologically increasing collateral perfusion during acute stroke using a carboxyhemoglobin gas transfer agent (Sanguinate™) in spontaneously hypertensive rats. J Cereb Blood Flow Metab. 2018;38:755–66.

    Article  CAS  Google Scholar 

  58. Christoforidis GA, Saadat N, Liu M, Jeong YI, Roth S, Niekrasz M, Carroll T. Effect of early Sanguinate (PEGylated carboxyhemoglobin bovine) infusion on cerebral blood flow to the ischemic core in experimental middle cerebral artery occlusion. J Neurointerv Surg. 2021:neurintsurg-2021–018239.

  59. Kuebler WM, Kisch-Wedel H, Kemming GI, Meisner F, Bruhn S, Koehler C, Flondor M, Messmer K, Zwissler B. Inhaled nitric oxide induces cerebrovascular effects in anesthetized pigs. Neurosci Lett. 2003;348:85–8.

    Article  CAS  Google Scholar 

  60. Terpolilli NA, Kim SW, Thal SC, Kataoka H, Zeisig V, Nitzsche B, Klaesner B, Zhu C, Schwarzmaier S, Meissner L, Mamrak U, Engel DC, Drzezga A, Patel RP, Blomgren K, Barthel H, Boltze J, Kuebler WM, Plesnila N. Inhalation of nitric oxide prevents ischemic brain damage in experimental stroke by selective dilatation of collateral arterioles. Circ Res. 2012;110:727–38.

    Article  CAS  Google Scholar 

  61. Zhou J, Wu PF, Wang F, Chen JG. Targeting gaseous molecules to protect against cerebral ischaemic injury: mechanisms and prospects. Clin Exp Pharmacol Physiol. 2012;39:566–76.

    Article  CAS  Google Scholar 

  62. Biose IJ, Dewar D, Macrae IM, McCabe C. Impact of stroke co-morbidities on cortical collateral flow following ischaemic stroke. J Cereb Blood Flow Metab. 2020;40:978–90.

    Article  Google Scholar 

  63. Seylaz J, Hara H, Pinard E, Mraovitch S, MacKenzie ET, Edvinsson L. Effect of stimulation of the sphenopalatine ganglion on cortical blood flow in the rat. J Cereb Blood Flow Metab. 1988;8:875–8.

    Article  CAS  Google Scholar 

  64. Goadsby PJ. Sphenopalatine ganglion stimulation increases regional cerebral blood flow independent of glucose utilization in the cat. Brain Res. 1990;506:145–8.

    Article  CAS  Google Scholar 

  65. Levi H, Schoknecht K, Prager O, Chassidim Y, Weissberg I, Serlin Y, Friedman A. Stimulation of the sphenopalatine ganglion induces reperfusion and blood-brain barrier protection in the photothrombotic stroke model. PLoS One. 2012;7:e39636.

    Article  CAS  Google Scholar 

  66. Bar-Shir A, Shemesh N, Nossin-Manor RYC. Late stimulation of the sphenopalatine-ganglion in ischemic rats: improvement in N-acetylaspartate levels and diffusion weighted imaging characteristics as seen by MR. J Magn Reson Imaging. 2010;6:1355–63.

    Article  Google Scholar 

  67. Henninger N, Fisher M. Stimulating circle of Willis nerve fibers preserves the diff usion-perfusion mismatch in experimental stroke. Stroke. 2007;38:2779–86.

    Article  Google Scholar 

  68. Bang OY, Saver JL, Kim SJ, et al. Collateral flow averts hemorrhagic transformation after endovascular therapy for acute ischemic stroke. Stroke. 2011;42:2235–9.

    Article  Google Scholar 

  69. Shuaib A, Hussain M. The past and future of neuroprotection in cerebral ischemic stroke. Eur Neurol. 2008;59:4–14.

    Article  Google Scholar 

  70. Siesjo BK. Mechanisms of ischemic brain damage. Crit Care Med. 1988;16:954–63.

    Article  CAS  Google Scholar 

  71. Astrup J, Siesjo B, Symon L. Thresholds in cerebral ischemia: the ischemic penumbra. Stroke. 1981;12:723–5.

    Article  CAS  Google Scholar 

  72. Borsody MK, Sacristan E. Facial nerve stimulation as a future treatment for ischemic stroke. Brain Circ. 2016;2:164–77 (Erratum in: Brain Circ. 2017;3:41).

    Article  Google Scholar 

  73. Bahr-Hosseini M, Saver JL. Mechanisms of action of acute and subacute sphenopalatine ganglion stimulation for ischemic stroke. Int J Stroke. 2020;15:839–48.

    Article  Google Scholar 

  74. Bornstein NM, Saver JL, Diener HC, Gorelick PB, Shuaib A, Solberg Y, Devlin T, Leung T, Molina CA, ImpACT-24A Investigators. Sphenopalatine Ganglion Stimulation to Augment Cerebral Blood Flow: A Randomized, Sham-Controlled Trial. Stroke. 2019;50:2108–17.

    Article  Google Scholar 

  75. Gidday JM. Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci. 2006;7:437–48.

    Article  CAS  Google Scholar 

  76. Zhao W, Li S, Ren C, Meng R, Jin K, Ji X. Remote ischemic conditioning for stroke: clinical data, challenges, and future directions. Ann Clin Transl Neurol. 2018;6:186–96.

    Article  Google Scholar 

  77. Ma J, Ma Y, Dong B, Bandet MV, Shuaib A, Winship IR. Prevention of the collapse of pial collaterals by remote ischemic perconditioning during acute ischemic stroke. J Cereb Blood Flow Metab. 2017;37:3001–14.

    Article  Google Scholar 

  78. Ma J, Ma Y, Shuaib A, Winship IR. Improved collateral flow and reduced damage after remote ischemic perconditioning during distal middle cerebral artery occlusion in aged rats. Sci Rep. 2020;10:12392.

    Article  CAS  Google Scholar 

  79. Hess DC, Blauenfeldt RA, Andersen G, Hougaard KD, Hoda MN, Ding Y, Ji X. Remote ischaemic conditioning-a new paradigm of self-protection in the brain. Nat Rev Neurol. 2015;11:698–710.

    Article  CAS  Google Scholar 

  80. Hess DC, Hoda MN, Khan MB. Humoral Mediators of Remote Ischemic Conditioning: Important Role of eNOS/NO/Nitrite. Acta Neurochir Suppl. 2016;121:45–8.

    Article  Google Scholar 

  81. Hoda MN, Siddiqui S, Herberg S, Periyasamy-Thandavan S, Bhatia K, Hafez SS, Johnson MH, Hill WD, Ergul A, Fagan SC, Hess DC. Remote ischemic perconditioning is effective alone and in combination with intravenous tissue-type plasminogen activator in murine model of embolic stroke. Stroke. 2012;43:2794–9.

    Article  CAS  Google Scholar 

  82. Hoda MN, Bhatia K, Hafez SS, Johnson MH, Siddiqui S, Ergul A, Zaidi SK, Fagan SC, Hess DC. Remote ischemic perconditioning is effective after embolic stroke in ovariectomized female mice. Transl Stroke Res. 2014;5:484–90.

    Article  CAS  Google Scholar 

  83. Abbasi-Habashi S, Jickling GC, Winship IR. Immune Modulation as a Key Mechanism for the Protective Effects of Remote Ischemic Conditioning After Stroke. Front Neurol. 2021;12:746486.

    Article  Google Scholar 

  84. Kalakech H, Hibert P, Prunier-Mirebeau D, Tamareille S, Letournel F, Macchi L, et al. RISK and SAFE signaling pathway involvement in apolipoprotein a-i-induced cardioprotection. PLoS ONE. 2014;9:e107950.

    Article  Google Scholar 

  85. Lecour S. Activation of the protective survivor activating factor enhancement (SAFE) pathway against reperfusion injury: does it go beyond the RISK pathway? J Mol Cell Cardiol. 2009;47:32–40.

    Article  CAS  Google Scholar 

  86. Tamareille S, Mateus V, Ghaboura N, Jeanneteau J, Croué A, Henrion D, et al. RISK and SAFE signaling pathway interactions in remote limb ischemic perconditioning in combination with local ischemic postconditioning. Basic Res Cardiol. 2011;106:1329–39.

    Article  CAS  Google Scholar 

  87. Davidson SM, Selvaraj P, He D, Boi-Doku C, Yellon RL, Vicencio JM, Yellon DM. Remote ischaemic preconditioning involves signalling through the SDF-1α/CXCR4 signalling axis. Basic Res Cardiol. 2013;108:377.

    Article  Google Scholar 

  88. England TJ, Hedstrom A, O’Sullivan S, et al. Recast (remote ischemic conditioning after stroke trial): a pilot randomized placebo controlled phase II trial in acute ischemic stroke. Stroke. 2017;48:1412–5.

    Article  Google Scholar 

  89. England TJ, Hedstrom A, O’Sullivan SE, Woodhouse L, Jackson B, Sprigg N, Bath PM. Remote Ischemic Conditioning After Stroke Trial 2: A Phase IIb Randomized Controlled Trial in Hyperacute Stroke. J Am Heart Assoc. 2019;8:e013572.

    Article  Google Scholar 

  90. Zhao W, Che R, Li S, et al. Remote ischemic conditioning for acute stroke patients treated with thrombectomy. Ann Clin Transl Neurol. 2018;5:850–6.

    Article  Google Scholar 

  91. Towner RA, Gulej R, Zalles M, Saunders D, Smith N, Lerner M, Morton KA, Richardson A. Rapamycin restores brain vasculature, metabolism, and blood-brain barrier in an inflammaging model. Geroscience. 2021;43:563–78.

    Article  CAS  Google Scholar 

  92. Lin AL, Zheng W, Halloran JJ, Burbank RR, Hussong SA, Hart MJ, Javors M, Shih YY, Muir E, Solano Fonseca R, Strong R, Richardson AG, Lechleiter JD, Fox PT, Galvan V. Chronic rapamycin restores brain vascular integrity and function through NO synthase activation and improves memory in symptomatic mice modeling Alzheimer’s disease. J Cereb Blood Flow Metab. 2013;33:1412–21.

    Article  CAS  Google Scholar 

  93. Beard DJ, Li Z, Schneider AM, Couch Y, Cipolla MJ, Buchan AM. Rapamycin induces an eNOS (endothelial nitric oxide synthase) dependent increase in brain collateral perfusion in Wistar and Spontaneously Hypertensive Rats. Stroke. 2020;51:2834–43.

    Article  CAS  Google Scholar 

  94. Wang J, Lin X, Mu Z, Shen F, Zhang L, Xie Q, Tang Y, Wang Y, Zhang Z, Yang GY. Rapamycin Increases Collateral Circulation in Rodent Brain after Focal Ischemia as detected by Multiple Modality Dynamic Imaging. Theranostics. 2019;9:4923–34.

    Article  CAS  Google Scholar 

  95. Yamamoto K, Takeshita K, Saito H. Plasminogen activator inhibitor-1 in aging. Sem Thromb Hemostas. 2014;40:652–9.

    Article  CAS  Google Scholar 

  96. Vaughan DE, Rai R, Khan SS, Eren M, Ghosh AK. Plasminogen activator inhibitor-1 is a marker and a mediator of senescence. Arterioscl Thromb Vasc Biol. 2017;37:1446–52.

    Article  CAS  Google Scholar 

  97. Nagai N, Suzuki Y, Van Hoef B, Lijnen HR, Collen D. Effects of plasminogen activator inhibitor-1 on ischemic brain injury in permanent and thrombotic middle cerebral artery occlusion models in mice. J Thromb Haemost. 2005;3:1379–84.

    Article  CAS  Google Scholar 

  98. Denorme F, Wyseure T, Peeters M, Vandeputte N, Gils A, Deckmyn H, et al. Inhibition of thrombin-activatable fibrinolysis inhibitor and plasminogen activator inhibitor-1 reduces ischemic brain damage in mice. Stroke. 2016;47:2419–22.

    Article  CAS  Google Scholar 

  99. Chan SL, Bishop N, Li Z, Cipolla MJ. Inhibition of PAI (Plasminogen Activator Inhibitor)-1 Improves Brain Collateral Perfusion and Injury After Acute Ischemic Stroke in Aged Hypertensive Rats. Stroke. 2018;49:1969–76.

    Article  CAS  Google Scholar 

  100. Drummond JC, Oh YS, Cole DJ, Shapiro HM. Phenylephrine-induced hypertension reduces ischemia following middle cerebral artery occlusion in rats. Stroke. 1989;20:1538–44.

    Article  CAS  Google Scholar 

  101. Smrcka M, Ogilvy CS, Crow RJ, Maynard KI, Kawamata T, Ames A III. Induced hypertension improves regional blood flow and protects against infarction during focal ischemia: time course of changes in blood flow measured by laser Doppler imaging. Neurosurgery. 1998;42:617–24.

    Article  CAS  Google Scholar 

  102. Chileuitt L, Leber K, McCalden T, Weinstein PR. Induced hypertension during ischemia reduces infarct area after temporary middle cerebral artery occlusion in rats. Surg Neurol. 1996;46:229–34.

    Article  CAS  Google Scholar 

  103. Shin HK, Nishimura M, Jones PB, Ay H, Boas DA, Moskowitz MA, Ayata C. Mild induced hypertension improves blood flow and oxygen metabolism in transient focal cerebral ischemia. Stroke. 2008;39:1548–55.

    Article  CAS  Google Scholar 

  104. Cole DJ, Drummond JC, Osborne TN, Matsumura J. Hypertension and hemodilution during cerebral ischemia reduce brain injury and edema. Am J Physiol. 1990;259:H211-217.

    CAS  Google Scholar 

  105. Bang OY, Chung JW, Kim SK, Kim SJ, Lee MJ, Hwang J, Seo WK, Ha YS, Sung SM, Kim EG, Sohn SI, Han MK. Therapeutic-induced hypertension in patients with noncardioembolic acute stroke. Neurology. 2019;93:e1955–63.

    Article  Google Scholar 

  106. Bailey ZS, Cardiff K, Yang X, Gilsdorf J, Shear D, Rasmussen TE, Leung LY. The Effects of Balloon Occlusion of the Aorta on Cerebral Blood Flow, Intracranial Pressure, and Brain Tissue Oxygen Tension in a Rodent Model of Penetrating Ballistic-Like Brain Injury. Front Neurol. 2019;10:1309.

    Article  Google Scholar 

  107. Long B, Hafen L, Koyfman A, Gottlieb M. Resuscitative Endovascular Balloon Occlusion of the Aorta: A Review for Emergency Clinicians. J Emerg Med. 2019;56:687–97.

    Article  Google Scholar 

  108. Liebeskind DS. Aortic occlusion for cerebral ischemia: from theory to practice. Curr Cardiol Rep. 2008;10:31–6.

    Article  Google Scholar 

  109. Noor R, Wang CX, Todd K, et al. Partial intra-aortic occlusion improves perfusion deficits and infarct size following focal cerebral ischemia. J Neuroimaging. 2010;20:272–6.

    Article  Google Scholar 

  110. Hammer MD, Schwamm L, Starkman S, Schellinger PD, Jovin T, Nogueira R, Burgin WS, Sen S, Diener HC, Watson T, Michel P, Shuaib A, Dillon W, Liebeskind DS. Safety and feasibility of NeuroFlo use in eight- to 24-hour ischemic stroke patients. Int J Stroke. 2012;7:655–61.

    Article  CAS  Google Scholar 

  111. Emery DJ, Schellinger PD, Selchen D, et al. Safety and feasibility of collateral blood flow augmentation after intravenous thrombolysis. Stroke. 2011;42:1135–7.

    Article  Google Scholar 

  112. Shuaib A, Schwab S, Rutledge JN, Starkman S, Liebeskind DS, Bernardini GL, Boulos A, Abou-Chebl A, Huang DY, Vanhooren G, Cruz-Flores S, Klucznik RP, Saver JL. Importance of proper patient selection and endpoint selection in evaluation of new therapies in acute stroke: further analysis of the SENTIS trial. J Neurointerv Surg. 2013;5(Suppl. 1):i21-24.

    Article  Google Scholar 

  113. Amaro S, Laredo C, Renú A, Llull L, Rudilosso S, Obach V, Urra X, Planas AM, Chamorro Á, URICO-ICTUS Investigators. Uric acid therapy prevents early ischemic stroke progression: A tertiary analysis of the URICO-ICTUS Trial (Efficacy Study of Combined Treatment With Uric Acid and r-tPA in Acute Ischemic Stroke). Stroke. 2016;47:2874–6.

    Article  CAS  Google Scholar 

Download references

Funding

We are grateful for the continued support of the National Institute of Neurologic Disorders and Stroke grants 2R01NS93289 and R21NS120419.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilyn J. Cipolla.

Ethics declarations

Ethics Approval

All studies were approved by the Institutional Animal Care and Use committee at the University of Vermont and complied with the National Institutes of Health guidelines for the care and use of laboratory animals.

Disclosures

None.

Conflict of interest

The author declares no conflict of interest financially or otherwise

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cipolla, M.J. Therapeutic Induction of Collateral Flow. Transl. Stroke Res. 14, 53–65 (2023). https://doi.org/10.1007/s12975-022-01019-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-022-01019-2

Navigation