In Vivo Studies
Animals
All animals were purchased from Harlan Laboratories (IN). Animals were purchased as adults (6–7 months, 230–320 g) or middle aged (10–12 months, 280–360 g). All animals were maintained in a 12-h dark:12-h light cycle in AAALAC-accredited vivarium facilities. Food and water were available ad libitum. A week after arrival, females were smeared daily for 14–21 days to determine estrous status (Jezierski and Sohrabji 2001). Vaginal cells were collected using cotton swabs and placed on slides, and cytology was examined at a low magnification. Adult females with a normal estrous cycle of 4–6 days were included in the study. Middle-aged females were included if cytology indicated they were in constant diestrus for at least 7 consecutive days. Adult animals and middle-aged animals were at an average of 7 months and 11.5 months, respectively, at the time of middle cerebral artery occlusion (MCAo). Within each age and sex, animals were assigned randomly to the treatment groups. A total of 143 animals were used in these studies with group sizes of 5–12. All experimental procedures were conducted in accordance with ARRIVE guidelines [57].
Surgical Procedures
AAV5 Injections
Animals were anesthetized (ketamine: 87 mg/kg; xylazine: 13 mg/kg) and placed in a stereotaxic instrument for delivery of the adenovirus construct to the cortex and striatum or the striatum alone. The construct was designed as follows: Recombinant adeno-associated virus serotype 5 (AAV5) was packaged (SignaGen, MD) with the miR-20a-3p gene downstream of the astrocyte-specific reporter GFAP and a tetracycline-inducible element (TetOn) and tagged with the mCherry reporter gene. The control construct consisted of an identical shuttle vector without the miR-20a-3p gene. In preliminary studies, the construct was injected at two doses (2.5 × 1011 VP/ml and 2.5 × 1010 VP/ml) and delivered stereotaxically either to the striatum as a single injection or to the cortex and striatum as two injections. The following coordinates were used relative to bregma on the left hemisphere: for the striatum: + 0.9 mm anterior/posterior, + 3.6 mm medial/lateral, and − 6.5 mm relative to the dura, and for the cortex: + 0.9 mm anterior/posterior, + 5.5 mm medial/lateral, and − 6.0 mm relative to the dura. Coordinates for the single striatal injections are as follows: + 0.9 mm anterior/posterior, + 2.8 mm medial/lateral, and − 6.5 mm relative to the dura. In each case, a needle attached to a Hamilton syringe was lowered to the appropriate depth and rAAV-TetOn-GFAP-miR-20a-3p-mCherry was delivered slowly into the parenchyma at a rate of 0.5 µl/min for a total of 3.5 µl. Animals were allowed to recover for 6 weeks after injections to allow full integration of the viral particles prior to MCAo.
Middle Cerebral Artery Occlusion
All animals were subjected to stereotaxic surgery to occlude the left middle cerebral artery as reported in Refs. [8, 14, 58]. Briefly, MCA occlusion was induced by stereotaxic microinjection of endothelin-1 (3 µl, 1:2 dilution in DPBS of 1 mg/ml endothelin-1 stock; American Peptide Company, Inc., CA). ET-1 was injected adjacent to the middle cerebral artery at the following coordinates relative to bregma: + 0.9 mm anterior/posterior, + 3.4 mm medial/lateral, and − 8.5 mm relative to the dura. For micronome assays, animals were terminated 2 days post stroke. The same procedure was followed for sham surgeries without the injection of endothelin-1. For miR mimic treatment experiments, animals were administered tail vein injections either immediately after stroke (IT), 4 h post stroke (DT), or 24 h post stroke (VDT) with 300 µl (7 µg/kg) of either miRNA mimic or negative control: miR-20a-3p (ACUGCAUUACGAGCACUUACA) oligonucleotide sequence (Thermo Fisher, Grand Island, NY) in In Vivo RNA-LANCEr II (Bioo Scientific, Austin, TX). For rAAV experiments, animals were injected i.p. with doxycycline, a stable Tet analogue, to activate the construct. Animals were terminated at 5 days post MCAo for these experiments. At termination, the brain was rapidly removed and processed for TTC staining to assess infarct volume or was collected for RNA and protein extraction. For FAM-miR-20a-3p experiments, animals were injected with a FAM-labeled miR-20a-3p mimic 4 h after MCAo or sham surgery. These animals were perfused at 48 h post MCAo. The brains were then extracted and fixed, sucrose loaded, cryosectioned at 30 µm per slice, and then mounted on glass slides. The slides were then incubated with the appropriate primary and secondary antibodies (see “Immunohistochemistry”) and imaged using a FV12-IX83 confocal microscope. The images were then quantified using the following methods: 200 cells (identified by the nuclear dye DAPI) that demonstrated co-localization with the FAM-miR-20a-3p oligo were randomly selected, and the proportion of those cells that were NeuN+ or GFAP+ was quantified.
Infarct Volume
Infarct volume estimation was performed on animals terminated on day 5 post stroke using our previously described procedures [59]. Briefly, brain slices (2 mm thick) between − 2.00 and + 4.00 mm from bregma were incubated in a 2% TTC solution at 37 °C for 20 min and then photographed using a Nikon E950 digital camera attached to a dissecting microscope. Digitized images were coded and analyzed by an investigator blind to the code. Infarct volume was determined using the Quantity One software package (Bio-Rad, CA) or ImageJ (NIH). Hemorrhagic loci were also visualized in TTC-stained sections by an investigator blind to the code.
Behavioral Assays
Adhesive Removal Task
Sensory motor performance was assessed using procedures described previously for the adhesive removal test [48, 60]. Briefly, two pieces of adhesive-backed foam tape (1 in. × 0.5 in.) were used as bilateral tactile stimuli attached to the palmar surface of the paw of each forelimb. For each forelimb, the time it took to remove each stimulus (tape) from the forelimbs was recorded during three trials per day for each forepaw. Animals were allowed to rest for 5 min between sessions, and each test session had a maximum time limit of 120 s.
Vibrissae-Evoked Forelimb Placement Task
Stroke injury was assessed using the vibrissae-evoked forelimb placement task, which was performed pre and post MCAo (described by [59, 61]). Briefly, animals were subjected to same-side placing trials and cross-midline placing trials elicited by stimulating ipsilesional and contralesional vibrissae. Vibrissae-evoked forelimb placement trials revealed a significant loss of right paw placement in all animals post stroke, indicating left-sided cortical-striatal infarction (Supplemental Fig. 4).
Astrocyte microRNA
Astrocytes were harvested from the ischemic hemisphere 2 days post stroke, using procedures published in Ref. [23]. Briefly, tissues were dissociated using a neural dissociation kit (trypsin) and cells were passed through a 30-µm filter to obtain a single cell suspension. Following myelin removal, cells were collected by positive selection using anti-GLAST antibody (1:5) for 10 min. GLAST was selected as a marker because it is an astrocyte-specific, membrane-associated protein, and previous work has established that astrocytes harvested 48 h after ischemia express glutamate transporters (GLT-1 and GLAST) and display no age differences in expression.
miRnome Profiling
Astrocyte miRnome was assessed in brain astrocytes from the ischemic hemispheres (n = 6 in each experimental group). Two panels covering 752 mouse and rat miRNAs were used (miRCURY LNA miRNA miRNome PCR Panels).
RNA Extraction
RNA was extracted from serum and astrocytes using the miRNeasy Kit (Qiagen, CA) following the manufacturer’s instructions, as described in Ref. [14]. Sample purity was assessed by NanoDrop technology, and a ratio of 1.8 was considered acceptable. Samples were stored at − 20 °C until use.
PCR Amplification
Template RNA (25 ng total RNA per sample) was incubated with reverse transcriptase for 60 min at 42 °C, followed by heat inactivation of the enzyme (5 min at 95 °C) and used immediately. cDNA was diluted 80-fold and then incubated with SYBR® Green master mix. Ten microliters was dispensed to each tube. An activation/denaturation step (95 °C, 10 min) precedes 40 amplification cycles each at 95 °C for 10 s and at 60 °C for 1 min, with a ramp rate of 1.6 °C/s. MiRNA primers were LNA modified (Exiqon, Woburn, MA) which allows for uniform Tm and confers greater specificity. Samples were then subject to PCR amplification of U6 as a housekeeping gene. Delta CT values of miR-20a-3p were obtained by subtracting the U6 value, and ddCT values were obtained by subtracting the mean dCT of the adult female group from each value in all groups. The fold change was expressed as the inverse log of ddCT(1/2ddCT).
MiRNA expression data obtained from miRnome panels were uploaded into the GSEA (GeneSifter® Analysis Edition) software program (Geospiza). Differences in miRNA expression were identified using a two-way ANOVA using age and sex as two independent factors, with Benjamini and Hochberg correction for false discovery rate for multiple comparisons at a cutoff (α) of 0.05.
Protein Analysis
Immunohistochemistry
Immunofluorescence for NeuN, ALDH1L1, and GFAP were performed on 30-µm brain sections mounted on glass slides. The sections were incubated with a blocking buffer (5% bovine serum albumin, 0.1% Triton X-100 in PBS, pH 7.4) for 1 h at room temperature. Sections were then incubated overnight at 4 °C with primary antibody (NeuN: anti-mouse [EMD Millipore], 1:250 µl; GFAP: anti-rabbit [Sigma-Aldrich], 1:3000 µl; Iba1: anti-rabbit [Wako Chemicals], 1:500 µl). Secondary antibodies (Alexa Fluor 488 and 594 anti-rabbit and anti-mouse) were then used at a 1:500 µl dilution at room temperature for 1 h. The sections were then washed thrice with PBS and then cover slipped with mounting media containing the nuclear dye DAPI (Fluoroshield, Abcam). Sections were visualized and imaged using an FV12-IX83 confocal microscope.
Protein Extraction
Cell proteins from the ischemic hemisphere (cortex and striatum) from animals terminated at 48 h were harvested and lysed in RIPA lysis buffer (Thermo Scientific, Grand Island, NY) and centrifuged at 20,000 rpm for 30 min. Supernatant was collected and stored at − 20 °C until further analysis. Protein concentrations were determined using the BCA protein assay kit (Pierce, Rockford, IL).
Western Blots
Protein extract (30 µg) from the ischemic hemisphere was loaded into 4–12% Novex gels and run at 60 V for 30 min and then at 100 V for 90 min. The protein was then transferred onto a PDVF membrane and probed with an antibody for Drp1 (anti-mouse, Abcam, 1:1000 µl) and conjugated to a fluorescent secondary antibody (LiCOR goat anti-mouse IRDye 680RD), normalizing to total protein (LiCOR Total Protein Stain).
Zymography
Protein extract (25 µg) from the ischemic hemisphere of middle-aged female rats post MCAo was loaded into a 10% Novex Zymogram Plus (gelatin) gel and run at 60 V for 30 min and then at 100 V for 90 min in a non-reducing sample buffer. The gel was then washed and incubated for 24 h at 37 °C. The gel was then stained with Coomassie blue for 30 min and then destained until clear bands could be seen.
IL-17a Assay
IL-17A expression was measured using the Rat IL-17A Platinum ELISA (Thermo Scientific, Grand Island, NY) according to the manufacturer’s instructions. Briefly, standards, controls, and aliquots of serum and protein lysates from ischemic cortex and striatum samples were loaded into a 96-well plate pre-coated with antibodies specific for IL-17A and followed by the addition of 100 µl of biotin-conjugated anti-rat IL-17A antibody and incubated at room temperature for 2 h on an orbital microplate shaker at 400 rpm for 30 s. With intervening washes, plates were sequentially incubated with 100 µl of streptavidin-HRP for 2 h, and 100 µl of TMB substrate solution for 30 min. The color reaction was stopped by an equal volume of stop solution and read at 450 nm in a microplate reader (Tecan, Switzerland). Standard curves were established from optical densities of wells containing known dilutions of the standard (1.6–100 pg/ml), and sample measurements were interpolated from standard curves. The experiments were performed in duplicates.
In Vitro Studies
Cell Culture and OGD
Human astrocytes and neurons from male and female donors of 18–20 gestational weeks of age were purchased from ScienCell Research Laboratories, grown in “Neural Growth Media (NGM)”, consisting of Neurobasal media with 2% B-27 supplement, 2% heat-inactivated gelded horse serum, 1% GlutaMAX, 1% penicillin, 0.1% ascorbic acid, 0.05% ampicillin, and 0.05% kanamycin, and plated in T-25 or T-75 cell culture-treated flasks. For experiments, cells were plated in poly-d-lysine—coated 6- or 96-well plates or in glass-bottom culture dishes in densities appropriate for the assay, which were ascertained via cell titration. Cultures were grown in normoxic conditions (5% CO2 and 21% O2, 37 °C) until confluent. Astrocytes were then subject to OGD (1% O2, 95% N2, and 5% CO2 in glucose-free DMEM, 37 °C) for 6 h with miR-20a-3p mimic (50 nM), scrambled miRNA (50 nM), or vehicle (PBS). Neurons were subjected to the same OGD conditions for 30 min. Culture media was collected, and cells were used for assays or processed for RNA isolation.
Calcein Assay
Cells were seeded at a density of 2 × 104 in a 96-well plate and subjected to OGD and treatment conditions for 6 h. Cell viability was determined using the Calcein-AM dye (Life Technologies, CA). After OGD, cells were incubated with Calcein-AM (2.5 µm) in Calcein-AM buffer for 20 min at 37 °C, and fluorescence was measured on a plate reader (Tecan, Switzerland) with excitation/emission set at 480 nm and 530 nm, respectively.
FRAP Analysis
Cells were seeded at a density of 1 × 105 into 2-ml glass-bottom culture dishes, cultured for 2 days, and then subjected to OGD and treatment conditions for 6 h. Culture media was collected, and cells were washed twice with gas-free recording buffer. Cells were then incubated with 120 nM MitoTracker Deep Red in gas-free recording buffer (154 mM NaCl, 5 mM KCl, 2 mM CaCl2·H2O, 0.5 mM MgCl2·H2O, 5 mM d-glucose, 10 mM HEPES) for 1 h. After incubation, cells were washed twice with gas-free recording buffer and imaged using confocal microscopy (FV12-IX83). Individual cells with MitoTracker Deep Red labeling were identified, and a region of interest containing a dense area of mitochondria close to the soma was selected. Pre-activation was recorded for 30 s, cells were bleached with high-intensity laser (405 nm, 80% power of total laser output) for 3 s, and subsequent activity was recorded for 90 s post bleach. Fluorescence intensity over time was plotted, and cells that did not achieve at least 75% bleaching were excluded from analysis.
Mitochondrial Respiration
Cells were seeded at a density of 4 × 104 in 96-well Seahorse microplates 15 h before OGD. After OGD, cells were washed twice with Seahorse XF DMEM medium (pH 7.4) and incubated for 45 min in a CO2-free incubator. The Mito Stress Test was then performed according to the manufacturer’s instructions. Briefly, this includes taking basal oxygen consumption measurements and then oxygen consumption measurements on the Seahorse XFe96 Analyzer after serial injections of oligomycin, FCCP, and rotenone/antimycin A.
Statistical Analysis
Power analysis for group sizes was computed based on effect sizes seen in previous data and pilot studies. In order to achieve a power of 0.9 (1 − β) and type 1 error rate (α = 0.05), the minimum sample size is 5. For these studies, group sizes ranged from 5 to 10. For comparisons between adult and middle-aged males and females on miR-20a-3p expression, a two-way ANOVA with post hoc comparisons was performed. For behavioral tests, a two-way ANOVA coded for repeated measure was used for each group, comparing the values obtained pre and post stroke. For all other tests, an unpaired t test was performed. Group differences were considered significant at p < 0.05 in each case. All in vitro assays were conducted with 3–5 replicate runs, and each run consisted of 3–12 technical replicates. Statistical analysis was performed using unpaired t tests for the Calcein assay, multiple t tests (one per time point) for FRAP assay, and 2-way ANOVA with post hoc comparisons for Seahorse assay. All statistical analyses were performed using GraphPad Prism software (v. 9.0).