Skip to main content

Advertisement

Log in

Mesenchymal Stem Cell-Mediated Mitochondrial Transfer: a Therapeutic Approach for Ischemic Stroke

  • Review Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Stroke is the leading cause of death and adult disability worldwide. Mitochondrial dysfunction is one of the hallmarks of stroke-induced neuronal death, and maintaining mitochondrial function is essential in cell survival and neurological progress following ischemic stroke. Stem cell-mediated mitochondrial transfer represents an emerging therapeutic approach for ischemic stroke. Accumulating evidence suggests that mesenchymal stem cells (MSCs) can directly transfer healthy mitochondria to damaged cells, and rescue mitochondrial damage-provoked tissue degeneration. This review summarizes the research on MSCs-mediated mitochondrial transfer as a therapeutic strategy against ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vos T, Barber RM, Bell B, Bertozzi-Villa A, Biryukov S, Bolliger I, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. The Lancet. 2015;386:743–800.

    Article  Google Scholar 

  2. He Z, Ning N, Zhou Q, Khoshnam SE, Farzaneh M. Mitochondria as a therapeutic target for ischemic stroke. Free Radic Biol Med. 2019.

  3. Khoshnam SE, Winlow W, Farzaneh M, Farbood Y, Moghaddam HF. Pathogenic mechanisms following ischemic stroke. Neurol Sci. 2017;38:1167–86.

    Article  PubMed  Google Scholar 

  4. Hameed A, Zafar H, Mylotte D, Sharif F. Recent trends in clot retrieval devices: a review. Cardiology and therapy. 2017;6:193–202.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bhatia R, Hill MD, Shobha N, Menon B, Bal S, Kochar P, et al. Low rates of acute recanalization with intravenous recombinant tissue plasminogen activator in ischemic stroke: real-world experience and a call for action. Stroke. 2010;41:2254–8.

    Article  CAS  PubMed  Google Scholar 

  6. Nour M, Scalzo F, Liebeskind DS. Ischemia-reperfusion injury in stroke. Interventional neurology. 2012;1:185–99.

    Article  Google Scholar 

  7. Mizuma A, You JS, Yenari MA. Targeting reperfusion injury in the age of mechanical thrombectomy. Stroke. 2018;49:1796–802.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Liu F, Lu J, Manaenko A, Tang J, Hu Q. Mitochondria in ischemic stroke: new insight and implications. Aging Dis. 2018;9:924.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yang J-L, Mukda S, Chen S-D. Diverse roles of mitochondria in ischemic stroke. Redox Biol. 2018;16:263–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bukeirat M, Sarkar SN, Hu H, Quintana DD, Simpkins JW, Ren X. MiR-34a regulates blood–brain barrier permeability and mitochondrial function by targeting cytochrome c. J Cereb Blood Flow Metab. 2016;36:387–92.

    Article  CAS  PubMed  Google Scholar 

  11. Andersen JV, Christensen SK, Nissen JD, Waagepetersen HS. Improved cerebral energetics and ketone body metabolism in db/db mice. J Cereb Blood Flow Metab. 2017;37:1137–47.

    Article  CAS  PubMed  Google Scholar 

  12. Borlongan CV, Nguyen H, Lippert T, Russo E, Tuazon J, Xu K, et al. May the force be with you: transfer of healthy mitochondria from stem cells to stroke cells. J Cereb Blood Flow Metab. 2019;39:367–70.

    Article  CAS  PubMed  Google Scholar 

  13. Shanmughapriya S, Langford D, Natarajaseenivasan K. Inter and intracellular mitochondrial trafficking in health and disease. Ageing Res Rev. 2020:101128.

  14. Torralba D, Baixauli F, Sánchez-Madrid F. Mitochondria know no boundaries: mechanisms and functions of intercellular mitochondrial transfer. Front Cell Dev Biol. 2016;4:107.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hayakawa K, Esposito E, Wang X, Terasaki Y, Liu Y, Xing C, et al. Transfer of mitochondria from astrocytes to neurons after stroke. Nature. 2016;535:551–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chang C-Y, Liang M-Z, Chen L. Current progress of mitochondrial transplantation that promotes neuronal regeneration. Translational neurodegeneration. 2019;8:17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hao L, Zou Z, Tian H, Zhang Y, Zhou H, Liu L. Stem cell-based therapies for ischemic stroke. Biomed Res Int. 2014;2014:468748.

    PubMed  PubMed Central  Google Scholar 

  18. Hess DC, Borlongan CV. Cell-based therapy in ischemic stroke. Expert Rev Neurother. 2008;8:1193–201.

    Article  CAS  PubMed  Google Scholar 

  19. Marei HE, Hasan A, Rizzi R, Althani A, Afifi N, Cenciarelli C, et al. Potential of stem cell-based therapy for ischemic stroke. Front Neurol. 2018;9:34.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang F, Tang H, Zhu J, Zhang JH. Transplanting mesenchymal stem cells for treatment of ischemic stroke. Cell Transplant. 2018;27:1825–34.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liu H, Honmou O, Harada K, Nakamura K, Houkin K, Hamada H, et al. Neuroprotection by PlGF gene-modified human mesenchymal stem cells after cerebral ischaemia. Brain. 2006;129:2734–45.

    Article  CAS  PubMed  Google Scholar 

  22. Boncoraglio GB, Ranieri M, Bersano A, Parati EA, Del Giovane C. Stem cell transplantation for ischemic stroke. Cochrane Database Syst Rev. 2019.

  23. Bang OY, Lee JS, Lee PH, Lee G. Autologous mesenchymal stem cell transplantation in stroke patients. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society. 2005;57:874–82.

    Article  Google Scholar 

  24. Russo E, Nguyen H, Lippert T, Tuazon J, Borlongan CV, Napoli E. Mitochondrial targeting as a novel therapy for stroke. Brain circulation. 2018;4:84–94.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Han H, Hu J, Yan Q, Zhu J, Zhu Z, Chen Y, et al. Bone marrow-derived mesenchymal stem cells rescue injured H9c2 cells via transferring intact mitochondria through tunneling nanotubes in an in vitro simulated ischemia/reperfusion model. Mol Med Rep. 2016;13:1517–24.

    Article  CAS  PubMed  Google Scholar 

  26. Yang Y, Ye G, Zhang Y-L, He H-W, Yu B-Q, Hong Y-M, et al. Transfer of mitochondria from mesenchymal stem cells derived from induced pluripotent stem cells attenuates hypoxia-ischemia-induced mitochondrial dysfunction in PC12 cells. Neural Regen Res. 2020;15:464.

    Article  PubMed  Google Scholar 

  27. Liu K, Guo L, Zhou Z, Pan M, Yan C. Mesenchymal stem cells transfer mitochondria into cerebral microvasculature and promote recovery from ischemic stroke. Microvasc Res. 2019;123:74–80.

    Article  CAS  PubMed  Google Scholar 

  28. Khoshnam SE, Sarkaki A, Khorsandi L, Winlow W, Badavi M, Moghaddam HF, et al. Vanillic acid attenuates effects of transient bilateral common carotid occlusion and reperfusion in rats. Biomed Pharmacother. 2017;96:667–74.

    Article  CAS  PubMed  Google Scholar 

  29. Khoshnam SE, Sarkaki A, Rashno M, Farbood Y. Memory deficits and hippocampal inflammation in cerebral hypoperfusion and reperfusion in male rats: neuroprotective role of vanillic acid. Life Sci. 2018;211:126–32.

    Article  CAS  PubMed  Google Scholar 

  30. Khoshnam SE, Farbood Y, Moghaddam HF, Sarkaki A, Badavi M, Khorsandi L. Vanillic acid attenuates cerebral hyperemia, blood-brain barrier disruption and anxiety-like behaviors in rats following transient bilateral common carotid occlusion and reperfusion. Metab Brain Dis. 2018;33:785–93.

    Article  CAS  PubMed  Google Scholar 

  31. Campbell BC, De Silva DA, Macleod MR, Coutts SB, Schwamm LH, Davis SM, et al. Ischaemic stroke. Nature Reviews Disease Primers. 2019;5:1–22.

    Article  Google Scholar 

  32. Khoshnam SE, Winlow W, Farbood Y, Moghaddam HF, Farzaneh M. Emerging roles of microRNAs in ischemic stroke: as possible therapeutic agents. Journal of stroke. 2017;19:166.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A. Magnesium gates glutamate-activated channels in mouse central neurones. Nature. 1984;307:462.

    Article  CAS  PubMed  Google Scholar 

  34. Wu QJ, Tymianski M. Targeting NMDA receptors in stroke: new hope in neuroprotection. Molecular brain. 2018;11:15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Mayer ML, Miller RJ. Excitatory amino acid receptors, second messengers and regulation of intracellular Ca2+ in mammalian neurons. Trends Pharmacol Sci. 1990;11:254–60.

    Article  CAS  PubMed  Google Scholar 

  36. Love S. Oxidative stress in brain ischemia. Brain Pathol. 1999;9:119–31.

    Article  CAS  PubMed  Google Scholar 

  37. Khoshnam SE, Winlow W, Farzaneh M. The interplay of MicroRNAs in the inflammatory mechanisms following ischemic stroke. Journal of Neuropatholgy & Experimental Neurology. 2017;76:548–61.

    Article  CAS  Google Scholar 

  38. Alishahi M, Farzaneh M, Ghaedrahmati F, Nejabatdoust A, Sarkaki A, Khoshnam SE. NLRP3 inflammasome in ischemic stroke: as possible therapeutic target. Int J Stroke. 2019;14:574–91.

    Article  PubMed  Google Scholar 

  39. Alishahi M, Ghaedrahmati F, Kolagar TA, Winlow W, Nikkar N, Farzaneh M, et al. Long non-coding RNAs and cell death following ischemic stroke. Metab Brain Dis. 2019:1–9.

  40. Pappachan B, Vasant R. Application of bilateral pedicled buccal fat pad in wide primary cleft palate. Br J Oral Maxillofac Surg. 2008;46:310–2.

    Article  PubMed  Google Scholar 

  41. Kim Y-K. The use of a pedicled buccal fat pad graft for bone coverage in primary palatorrhaphy: a case report. J Oral Maxillofac Surg. 2001;59:1499–501.

    Article  CAS  PubMed  Google Scholar 

  42. Dubin B, Jackson IT, Halim A, Triplett W, Ferreira M. Anatomy of the buccal fat pad and its clinical significance. Plast Reconstr Surg. 1989;83:257–64.

    Article  CAS  PubMed  Google Scholar 

  43. Dolanmaz D, Tuz H, Bayraktar S, Metin M, Erdem E, Baykul T. Use of pedicled buccal fat pad in the closure of oroantral communication: analysis of 75 cases. Quintessence Int. 2004;35.

  44. Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454:428.

    Article  CAS  PubMed  Google Scholar 

  45. Matzinger P. An innate sense of danger. Ann N Y Acad Sci. 2002;961:341–2.

    Article  PubMed  Google Scholar 

  46. Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature. 2014;508:55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lucas SM, Rothwell NJ, Gibson RM. The role of inflammation in CNS injury and disease. Br J Pharmacol. 2006;147:S232–S40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fu Y, Liu Q, Anrather J, Shi F-D. Immune interventions in stroke. Nat Rev Neurol. 2015;11:524–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Amantea D, Nappi G, Bernardi G, Bagetta G, Corasaniti MT. Post-ischemic brain damage: pathophysiology and role of inflammatory mediators. FEBS J. 2009;276:13–26.

    Article  CAS  PubMed  Google Scholar 

  50. Sutherland RW. Obstructive Uropathy. National Kidney Foundation Primer on Kidney Diseases. Sixth ed. Berlin: Elsevier; 2014. p. 397–404.

  51. Zeidel ML. Obstructive uropathy. Goldman’s Cecil Medicine. Twenty Fourth ed. Berlin: Elsevier; 2012. p. 776–80.

  52. Yilmaz G, Vital S, Yilmaz CE, Stokes KY, Alexander JS, Granger DN. Selectin-mediated recruitment of bone marrow stromal cells in the postischemic cerebral microvasculature. Stroke. 2011;42:806–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Franklin JL. Redox regulation of the intrinsic pathway in neuronal apoptosis. Antioxid Redox Signal. 2011;14:1437–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Niizuma K, Yoshioka H, Chen H, Kim GS, Jung JE, Katsu M, et al. Mitochondrial and apoptotic neuronal death signaling pathways in cerebral ischemia. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2010;1802:92–9.

    Article  CAS  Google Scholar 

  55. He Z, Ning N, Zhou Q, Khoshnam SE, Farzaneh M. Mitochondria as a therapeutic target for ischemic stroke. Free Radic Biol Med. 2020;146:45–58.

    Article  CAS  PubMed  Google Scholar 

  56. Cadenas E, Davies KJ. Mitochondrial free radical generation, oxidative stress. and aging Free radical biology and medicine. 2000;29:222–30.

    Article  CAS  PubMed  Google Scholar 

  57. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:44–84.

    Article  CAS  PubMed  Google Scholar 

  58. Chen S-D, Lee J-M, Yang D-I, Nassief A, Hsu CY. Combination therapy for ischemic stroke. Am J Cardiovasc Drugs. 2002;2:303–13.

    Article  CAS  PubMed  Google Scholar 

  59. Chen SD, Lin TK, Yang DI, Lee SY, Shaw FZ, Liou CW, et al. Protective effects of peroxisome proliferator-activated receptors γ coactivator-1α against neuronal cell death in the hippocampal CA1 subfield after transient global ischemia. J Neurosci Res. 2010;88:605–13.

    CAS  PubMed  Google Scholar 

  60. Niizuma K, Endo H, Nito C, Myer DJ, Chan PH. Potential role of PUMA in delayed death of hippocampal CA1 neurons after transient global cerebral ischemia. Stroke. 2009;40:618–25.

    Article  CAS  PubMed  Google Scholar 

  61. Zhang X, Yan H, Yuan Y, Gao J, Shen Z, Cheng Y, et al. Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance. Autophagy. 2013;9:1321–33.

    Article  CAS  PubMed  Google Scholar 

  62. Matheoud D, Sugiura A, Bellemare-Pelletier A, Laplante A, Rondeau C, Chemali M, et al. Parkinson’s disease-related proteins PINK1 and Parkin repress mitochondrial antigen presentation. Cell. 2016;166:314–27.

    Article  CAS  PubMed  Google Scholar 

  63. Mills EL, O’Neill LA. Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal. Eur J Immunol. 2016;46:13–21.

    Article  CAS  PubMed  Google Scholar 

  64. Zhao J, Mou Y, Bernstock JD, Klimanis D, Wang S, Spatz M, et al. Synthetic oligodeoxynucleotides containing multiple telemeric TTAGGG motifs suppress inflammasome activity in macrophages subjected to oxygen and glucose deprivation and reduce ischemic brain injury in stroke-prone spontaneously hypertensive rats. PLoS One. 2015;10:e0140772.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Schroder K, Tschopp J. The inflammasomes. cell. 2010;140:821–32.

    Article  CAS  PubMed  Google Scholar 

  66. Strowig T, Henao-Mejia J, Elinav E, Flavell R. Inflammasomes in health and disease. nature. 2012;481:278–86.

    Article  CAS  PubMed  Google Scholar 

  67. Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol. 2010;11:136.

    Article  CAS  PubMed  Google Scholar 

  68. Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469:221.

    Article  CAS  PubMed  Google Scholar 

  69. Subramanian N, Natarajan K, Clatworthy MR, Wang Z, Germain RN. The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation. Cell. 2013;153:348–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hornung V, Latz E. Critical functions of priming and lysosomal damage for NLRP3 activation. Eur J Immunol. 2010;40:620–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J. NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity. 2004;20:319–25.

    Article  CAS  PubMed  Google Scholar 

  72. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol Cell. 2002;10:417–26.

    Article  CAS  PubMed  Google Scholar 

  73. Bauernfeind F, Ablasser A, Bartok E, Kim S, Schmid-Burgk J, Cavlar T, et al. Inflammasomes: current understanding and open questions. Cell Mol Life Sci. 2011;68:765–83.

    Article  CAS  PubMed  Google Scholar 

  74. Lamkanfi M, Dixit VM. Manipulation of host cell death pathways during microbial infections. Cell Host Microbe. 2010;8:44–54.

    Article  CAS  PubMed  Google Scholar 

  75. McCully JD, Cowan DB, Emani SM, Pedro J. Mitochondrial transplantation: from animal models to clinical use in humans. Mitochondrion. 2017;34:127–34.

    Article  CAS  PubMed  Google Scholar 

  76. Patananan AN, Wu TH, Chiou PY, Teitell MA. Modifying the mitochondrial genome. Cell Metab. 2016;23:785–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chang J-C, Wu S-L, Liu K-H, Chen Y-H, Chuang C-S, Cheng F-C, et al. Allogeneic/xenogeneic transplantation of peptide-labeled mitochondria in Parkinson’s disease: restoration of mitochondria functions and attenuation of 6-hydroxydopamine–induced neurotoxicity. Translational Research. 2016;170:40–56. e3.

    Article  CAS  PubMed  Google Scholar 

  78. Gollihue JL, Patel SP, Eldahan KC, Cox DH, Donahue RR, Taylor BK, et al. Effects of mitochondrial transplantation on bioenergetics, cellular incorporation, and functional recovery after spinal cord injury. J Neurotrauma. 2018;35:1800–18.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Masuzawa A, Black KM, Pacak CA, Ericsson M, Barnett RJ, Drumm C, et al. Transplantation of autologously derived mitochondria protects the heart from ischemia-reperfusion injury. Am J Phys Heart Circ Phys. 2013;304:H966–H82.

    CAS  Google Scholar 

  80. Kaza AK, Wamala I, Friehs I, Kuebler JD, Rathod RH, Berra I, et al. Myocardial rescue with autologous mitochondrial transplantation in a porcine model of ischemia/reperfusion. J Thorac Cardiovasc Surg. 2017;153:934–43.

    Article  PubMed  Google Scholar 

  81. Shi X, Zhao M, Fu C, Fu A. Intravenous administration of mitochondria for treating experimental Parkinson’s disease. Mitochondrion. 2017;34:91–100.

    Article  CAS  PubMed  Google Scholar 

  82. Fu A, Shi X, Zhang H, Fu B. Mitotherapy for fatty liver by intravenous administration of exogenous mitochondria in male mice. Front Pharmacol. 2017;8:241.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Huang P-J, Kuo C-C, Lee H-C, Shen C-I, Cheng F-C, Wu S-F, et al. Transferring xenogenic mitochondria provides neural protection against ischemic stress in ischemic rat brains. Cell Transplant. 2016;25:913–27.

    Article  CAS  PubMed  Google Scholar 

  84. Zhang Z, Ma Z, Yan C, Pu K, Wu M, Bai J, et al. Muscle-derived autologous mitochondrial transplantation: a novel strategy for treating cerebral ischemic injury. Behav Brain Res. 2019;356:322–31.

    Article  CAS  PubMed  Google Scholar 

  85. Gollihue JL, Patel SP, Mashburn C, Eldahan KC, Sullivan PG, Rabchevsky AG. Optimization of mitochondrial isolation techniques for intraspinal transplantation procedures. J Neurosci Methods. 2017;287:1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gollihue JL, Rabchevsky AG. Prospects for therapeutic mitochondrial transplantation. Mitochondrion. 2017;35:70–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gollihue JL, Patel SP, Rabchevsky AG. Mitochondrial transplantation strategies as potential therapeutics for central nervous system trauma. Neural Regen Res. 2018;13:194.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Li Z, Okamoto K-I, Hayashi Y, Sheng M. The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell. 2004;119:873–87.

    Article  CAS  PubMed  Google Scholar 

  89. Egawa N, Lok J, Washida K, Arai K. Mechanisms of axonal damage and repair after central nervous system injury. Transl Stroke Res. 2017;8:14–21.

    Article  CAS  PubMed  Google Scholar 

  90. Armstrong JS. Mitochondrial medicine: pharmacological targeting of mitochondria in disease. Br J Pharmacol. 2007;151:1154–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Emani SM, Piekarski BL, Harrild D, Pedro J, McCully JD. Autologous mitochondrial transplantation for dysfunction after ischemia-reperfusion injury. J Thorac Cardiovasc Surg. 2017;154:286–9.

    Article  PubMed  Google Scholar 

  92. Joshi AU, Minhas PS, Liddelow SA, Haileselassie B, Andreasson KI, Dorn G 2nd, et al. Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nat Neurosci. 2019;22:1635–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther. 2019;10:68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kolios G, Moodley Y. Introduction to stem cells and regenerative medicine. Respiration. 2013;85:3–10.

    Article  PubMed  Google Scholar 

  95. Feng X, Zhang J, Smuga-Otto K, Tian S, Yu J, Stewart R, et al. Protein kinase C mediated extraembryonic endoderm differentiation of human embryonic stem cells. Stem cells (Dayton, Ohio). 2012;30:461–70.

    Article  CAS  Google Scholar 

  96. Farzaneh M, Alishahi M, Derakhshan Z, Sarani NH, Attari F, Khoshnam SE. The expression and functional roles of miRNAs in embryonic and lineage-specific stem cells. Current stem cell research & therapy. 2019;14:278–89.

    Article  CAS  Google Scholar 

  97. Farzaneh M, Derakhshan Z, Hallajzadeh J, Sarani NH, Nejabatdoust A, Khoshnam SE. Suppression of TGF-β and ERK signaling pathways as a new strategy to provide rodent and non-rodent pluripotent stem cells. Current stem cell research & therapy. 2019;14:466–73.

    Article  CAS  Google Scholar 

  98. Kolagar TA, Farzaneh M, Nikkar N, Khoshnam SE. Human pluripotent stem cells in neurodegenerative diseases: potentials, advances and limitations. Current Stem Cell Research & Therapy. 2020;15:102–10.

    Article  CAS  Google Scholar 

  99. Wang G, Farzaneh M. Mini review; differentiation of human pluripotent stem cells into oocytes. Current Stem Cell Research & Therapy. 2020.

  100. Shi J, Farzaneh M, Khoshnam SE. Yes-associated protein and PDZ binding motif: a critical signaling pathway in the control of human pluripotent stem cells self-renewal and differentiation. Cellular Reprogramming. 2020;22:55–61.

    Article  CAS  PubMed  Google Scholar 

  101. Zhao Y, Liu H, Zhao C, Dang P, Li H, Farzaneh M. Paracrine interactions involved in human induced pluripotent stem cells differentiation into chondrocytes. Current Stem Cell Research & Therapy. 2020;15:233–42.

    Article  CAS  Google Scholar 

  102. Farzaneh M, Anbiyaiee A, Khoshnam SE. Human pluripotent stem cells for spinal cord injury. Current Stem Cell Research & Therapy. 2020;15:135–43.

    Article  CAS  Google Scholar 

  103. Kim A, Lee S-Y, Kim B-Y, Chung S-K. Elimination of teratogenic human induced pluripotent stem cells by bee venom via calcium-calpain pathway. Int J Mol Sci. 2020;21:3265.

    Article  CAS  PubMed Central  Google Scholar 

  104. Tao H, Chen X, Wei A, Song X, Wang W, Liang L, et al. Comparison of teratoma formation between embryonic stem cells and parthenogenetic embryonic stem cells by molecular imaging. Stem Cells Int. 2018, 2018:7906531.

  105. Doeppner TR, Hermann DM. Stem cell-based treatments against stroke: observations from human proof-of-concept studies and considerations regarding clinical applicability. Front Cell Neurosci. 2014;8:357.

    PubMed  PubMed Central  Google Scholar 

  106. Anbiyaiee A, Khoshnam S, Farzaneh M, Alishahi M. Human mesenchymal stem cells for spinal cord injury. Current Stem Cell Research & Therapy. 2020.

  107. Farzaneh M, Rahimi F, Alishahi M, Khoshnam SE. Paracrine mechanisms involved in mesenchymal stem cell differentiation into cardiomyocytes. Current stem cell research & therapy. 2019;14:9–13.

    Article  CAS  Google Scholar 

  108. Patel DM, Shah J, Srivastava AS. Therapeutic potential of mesenchymal stem cells in regenerative medicine. Stem Cells Int. 2013;2013:496218.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Farzaneh M, Khoshnam S, Mozdziak P. Concise review: avian multipotent stem cells as a novel tool for investigating cell-based therapies. J Dairy Vet Anim Res. 2017;5:00125.

    Article  Google Scholar 

  110. Hernández R, Jiménez-Luna C, Perales-Adán J, Perazzoli G, Melguizo C, Prados J. Differentiation of human mesenchymal stem cells towards neuronal lineage: clinical trials in nervous system disorders. Biomol Ther (Seoul). 2020;28:34–44.

    Article  Google Scholar 

  111. Kozlowska U, Krawczenko A, Futoma K, Jurek T, Rorat M, Patrzalek D, et al. Similarities and differences between mesenchymal stem/progenitor cells derived from various human tissues. World J Stem Cells. 2019;11:347–74.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Harrell CR, Fellabaum C, Jovicic N, Djonov V, Arsenijevic N, Volarevic V. Molecular mechanisms responsible for therapeutic potential of mesenchymal stem cell-derived Secretome. Cells. 2019;8:467.

    Article  CAS  PubMed Central  Google Scholar 

  113. Mahmood R, Shaukat M, Choudhery MS. Biological properties of mesenchymal stem cells derived from adipose tissue, umbilical cord tissue and bone marrow. CTE. 2018;2:78–90.

    Google Scholar 

  114. Zhao C, Ikeya M. Generation and applications of induced pluripotent stem cell-derived mesenchymal stem cells. Stem Cells Int. 2018;2018:9601623.

    PubMed  PubMed Central  Google Scholar 

  115. Xu M, Shaw G, Murphy M, Barry F. Induced pluripotent stem cell-derived mesenchymal stromal cells are functionally and genetically different from bone marrow-derived mesenchymal stromal cells. Stem Cells. 2019;37:754–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Grau-Vorster M, Laitinen A, Nystedt J, Vives J. HLA-DR expression in clinical-grade bone marrow-derived multipotent mesenchymal stromal cells: a two-site study. Stem Cell Res Ther. 2019;10:1–8.

    Article  Google Scholar 

  117. Fan X-L, Zhang Y, Li X, Fu Q-L. Mechanisms underlying the protective effects of mesenchymal stem cell-based therapy. Cell Mol Life Sci. 2020:1–24.

  118. Ankrum JA, Ong JF, Karp JM. Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol. 2014;32:252–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sun Q, Hong L, Huang Z, Na N, Hua X, Peng Y, et al. Allogeneic mesenchymal stem cell as induction therapy to prevent both delayed graft function and acute rejection in deceased donor renal transplantation: study protocol for a randomized controlled trial. Trials. 2017;18:545.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Yoshida S, Miyagawa S, Toyofuku T, Fukushima S, Kawamura T, Kawamura A, et al. Syngeneic mesenchymal stem cells reduce immune rejection after induced pluripotent stem cell-derived allogeneic cardiomyocyte transplantation. Sci Rep. 2020;10:1–11.

    Article  CAS  Google Scholar 

  121. Marquez-Curtis LA, Janowska-Wieczorek A, McGann LE, Elliott JAW. Mesenchymal stromal cells derived from various tissues: biological, clinical and cryopreservation aspects. Cryobiology. 2015;71:181–97.

    Article  CAS  PubMed  Google Scholar 

  122. Via AG, Frizziero A, Oliva F. Biological properties of mesenchymal stem cells from different sources. Muscles Ligaments Tendons J. 2012;2:154–62.

    PubMed  Google Scholar 

  123. Sakaguchi Y, Sekiya I, Yagishita K, Muneta T. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis & Rheumatism: official Journal of the American College of Rheumatology. 2005;52:2521–9.

    Article  Google Scholar 

  124. Huibregtse BA, Johnstone B, Goldberg VM, Caplan AI. Effect of age and sampling site on the chondro-osteogenic potential of rabbit marrow-derived mesenchymal progenitor cells. J Orthop Res. 2000;18:18–24.

    Article  CAS  PubMed  Google Scholar 

  125. Danišovič L, Varga I, Polák Š, Uličná M, Hlavačková L, Böhmer D, et al. Comparison of in vitro chondrogenic potential of human mesenchymal stem cells derived from bone marrow and adipose tissue. Gen Physiol Biophys. 2009;28:56–62.

    Article  PubMed  Google Scholar 

  126. Gasiūnienė M, Zentelytė A, Wojtas B, Baronaitė S, Krasovskaja N, Savickienė J, et al. DNA methyltransferases inhibitors effectively induce gene expression changes suggestive of cardiomyogenic differentiation of human amniotic fluid-derived mesenchymal stem cells via chromatin remodeling. J Tissue Eng Regen Med. 2019;13:469–81.

    Article  PubMed  CAS  Google Scholar 

  127. Park J, Lee JH, Yoon BS, Jun EK, Lee G, Kim IY, et al. Additive effect of bFGF and selenium on expansion and paracrine action of human amniotic fluid-derived mesenchymal stem cells. Stem Cell Res Ther. 2018;9:293.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Charbord P, Livne E, Gross G, Häupl T, Neves NM, Marie P, et al. Human bone marrow mesenchymal stem cells: a systematic reappraisal via the genostem experience. Stem Cell Rev Rep. 2011;7:32–42.

    Article  CAS  PubMed  Google Scholar 

  129. Wang W-G, Lou S-Q, Ju X-D, Xia K, Xia J-H. In vitro chondrogenesis of human bone marrow-derived mesenchymal progenitor cells in monolayer culture: activation by transfection with TGF-β2. Tissue Cell. 2003;35:69–77.

    Article  PubMed  Google Scholar 

  130. Violini S, Ramelli P, Pisani LF, Gorni C, Mariani P. Horse bone marrow mesenchymal stem cells express embryo stem cell markers and show the ability for tenogenic differentiation by in vitro exposure to BMP-12. BMC Cell Biol. 2009;10:29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Delorme B, Ringe J, Pontikoglou C, Gaillard J, Langonné A, Sensebé L, et al. Specific lineage-priming of bone marrow mesenchymal stem cells provides the molecular framework for their plasticity. Stem Cells. 2009;27:1142–51.

    Article  CAS  PubMed  Google Scholar 

  132. Arthur A, Rychkov G, Shi S, Koblar SA, Gronthos S. Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells. 2008;26:1787–95.

    Article  CAS  PubMed  Google Scholar 

  133. Wang Y-X, Ma Z-F, Huo N, Tang L, Han C, Duan Y-Z, et al. Porcine tooth germ cell conditioned medium can induce odontogenic differentiation of human dental pulp stem cells. J Tissue Eng Regen Med. 2011;5:354–62.

    Article  CAS  PubMed  Google Scholar 

  134. Zhang W, Walboomers XF, Shi S, Fan M, Jansen JA. Multilineage differentiation potential of stem cells derived from human dental pulp after cryopreservation. Tissue Eng. 2006;12:2813–23.

    Article  CAS  PubMed  Google Scholar 

  135. Luo L, He Y, Wang X, Key B, Lee BH, Li H, et al. Potential roles of dental pulp stem cells in neural regeneration and repair. Stem Cells Int. 2018;2018:1731289.

    PubMed  PubMed Central  Google Scholar 

  136. Conconi MT, Burra P, Di Liddo R, Calore C, Turetta M, Bellini S, et al. CD105 (+) cells from Wharton's jelly show in vitro and in vivo myogenic differentiative potential. Int J Mol Med. 2006;18:1089–96.

    CAS  PubMed  Google Scholar 

  137. Wu KH, Zhou B, Lu SH, Feng B, Yang SG, Du WT, et al. In vitro and in vivo differentiation of human umbilical cord derived stem cells into endothelial cells. J Cell Biochem. 2007;100:608–16.

    Article  CAS  PubMed  Google Scholar 

  138. Zvaifler NJ, Marinova-Mutafchieva L, Adams G, Edwards CJ, Moss J, Burger JA, et al. Mesenchymal precursor cells in the blood of normal individuals. Arthritis Research & Therapy. 2000;2:477.

    Article  CAS  Google Scholar 

  139. Sabapathy V, Ravi S, Srivastava V, Srivastava A, Kumar S. Long-term cultured human term placenta-derived mesenchymal stem cells of maternal origin displays plasticity. Stem Cells Int. 2012;2012:174328.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Oliveira MS, Barreto-Filho JB. Placental-derived stem cells: culture, differentiation and challenges. World J Stem Cells. 2015;7:769.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Lorenz K, Sicker M, Schmelzer E, Rupf T, Salvetter J, Schulz-Siegmund M, et al. Multilineage differentiation potential of human dermal skin-derived fibroblasts. Exp Dermatol. 2008;17:925–32.

    Article  CAS  PubMed  Google Scholar 

  142. Vishnubalaji R, Manikandan M, Al-Nbaheen M, Kadalmani B, Aldahmash A, Alajez NM. In vitro differentiation of human skin-derived multipotent stromal cells into putative endothelial-like cells. BMC Dev Biol. 2012;12:7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Shi C-M, Cheng T-M. Differentiation of dermis-derived multipotent cells into insulin-producing pancreatic cells in vitro. World J Gastroenterol: WJG. 2004;10:2550.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Kabat M, Bobkov I, Kumar S, Grumet M. Trends in mesenchymal stem cell clinical trials 2004-2018: is efficacy optimal in a narrow dose range? Stem Cells Transl Med. 2020;9:17–27.

    Article  CAS  PubMed  Google Scholar 

  145. Berebichez-Fridman R, Montero-Olvera PR. Sources and clinical applications of mesenchymal stem cells: state-of-the-art review. Sultan Qaboos Univ Med J. 2018;18:e264–e77.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: cell biology to clinical progress. npj Regenerative Medicine. 2019;4:22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Parekkadan B, Milwid JM. Mesenchymal stem cells as therapeutics. Annu Rev Biomed Eng. 2010;12:87–117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Musiał-Wysocka A, Kot M, Majka M. The pros and cons of mesenchymal stem cell-based therapies. Cell Transplant. 2019;28:801–12.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Boukelmoune N, Chiu GS, Kavelaars A, Heijnen CJ. Mitochondrial transfer from mesenchymal stem cells to neural stem cells protects against the neurotoxic effects of cisplatin. Acta neuropathologica communications. 2018;6:1–13.

    Article  CAS  Google Scholar 

  150. Eljarrah A, Gergues M, Pobiarzyn PW, Sandiford OA, Rameshwar P. Therapeutic potential of mesenchymal stem cells in immune-mediated diseases. Stem Cells. Berlin: Springer; 2019. p. 93–108.

    Google Scholar 

  151. Brennan MÁ, Layrolle P, Mooney DJ. Biomaterials functionalized with MSC secreted extracellular vesicles and soluble factors for tissue regeneration. Adv Funct Mater. 2020:1909125.

  152. Kany S, Vollrath JT, Relja B. Cytokines in inflammatory disease. Int J Mol Sci. 2019;20:6008.

    Article  CAS  PubMed Central  Google Scholar 

  153. Zachar L, Bačenková D, Rosocha J. Activation, homing, and role of the mesenchymal stem cells in the inflammatory environment. J Inflamm Res. 2016;9:231–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Newell C, Sabouny R, Hittel DS, Shutt TE, Khan A, Klein MS, et al. Mesenchymal stem cells shift mitochondrial dynamics and enhance oxidative phosphorylation in recipient cells. Front Physiol. 2018;9:1572.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Luo R, Lu Y, Liu J, Cheng J, Chen Y. Enhancement of the efficacy of mesenchymal stem cells in the treatment of ischemic diseases. Biomed Pharmacother. 2019;109:2022–34.

    Article  CAS  PubMed  Google Scholar 

  156. Vu Q, Xie K, Eckert M, Zhao W, Cramer SC. Meta-analysis of preclinical studies of mesenchymal stromal cells for ischemic stroke. Neurology. 2014;82:1277–86.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Anderson JD, Pham MT, Contreras Z, Hoon M, Fink KD, Johansson HJ, et al. Mesenchymal stem cell-based therapy for ischemic stroke. Chinese Neurosurgical Journal. 2016;2:36.

    Article  Google Scholar 

  158. Yong KW, Choi JR, Mohammadi M, Mitha AP, Sanati-Nezhad A, Sen A. Mesenchymal stem cell therapy for ischemic tissues. Stem Cells Int. 2018;2018:8179075.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Dabrowska S, Andrzejewska A, Lukomska B, Janowski M. Neuroinflammation as a target for treatment of stroke using mesenchymal stem cells and extracellular vesicles. J Neuroinflammation. 2019;16:178.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Li S, Wang X, Li J, Zhang J, Zhang F, Hu J, et al. Advances in the treatment of ischemic diseases by mesenchymal stem cells. Stem Cells Int. 2016;2016:5896061.

    PubMed  PubMed Central  Google Scholar 

  161. Stonesifer C, Corey S, Ghanekar S, Diamandis Z, Acosta SA, Borlongan CV. Stem cell therapy for abrogating stroke-induced neuroinflammation and relevant secondary cell death mechanisms. Prog Neurobiol. 2017;158:94–131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Hsuan YC-Y, Lin C-H, Chang C-P, Lin M-T. Mesenchymal stem cell-based treatments for stroke, neural trauma, and heat stroke. Brain Behav. 2016;6:e00526-e.

    Article  Google Scholar 

  163. Li X, Huang M, Zhao R, Zhao C, Liu Y, Zou H, et al. Intravenously delivered allogeneic mesenchymal stem cells Bidirectionally regulate inflammation and induce neurotrophic effects in distal middle cerebral artery occlusion rats within the first 7 days after stroke. Cell Physiol Biochem. 2018;46:1951–70.

    Article  CAS  PubMed  Google Scholar 

  164. Muniswami DM, Kanthakumar P, Kanakasabapathy I, Tharion G. Motor recovery after transplantation of bone marrow mesenchymal stem cells in rat models of spinal cord injury. Ann Neurosci. 2019;25:126–40.

    Article  PubMed  Google Scholar 

  165. Hasan A, Deeb G, Rahal R, Atwi K, Mondello S, Marei HE, et al. Mesenchymal stem cells in the treatment of traumatic brain injury. 2017;Front Neurol, 8:28.

  166. Volkman R, Offen D. Concise review: mesenchymal stem cells in neurodegenerative diseases. Stem Cells. 2017;35:1867–80.

    Article  PubMed  Google Scholar 

  167. Zhou Y, Shao A, Xu W, Wu H, Deng Y. Advance of stem cell treatment for traumatic brain injury. Front Cell Neurosci. 2019;13.

  168. Prasad K, Sharma A, Garg A, Mohanty S, Bhatnagar S, Johri S, et al. Intravenous autologous bone marrow mononuclear stem cell therapy for ischemic stroke: a multicentric, randomized trial. Stroke. 2014;45:3618–24.

    Article  CAS  PubMed  Google Scholar 

  169. Bhasin A, Kumaran SS, Bhatia R, Mohanty S, Srivastava MP. Safety and feasibility of autologous mesenchymal stem cell transplantation in chronic stroke in Indian patients. A four-year follow up. Journal of stem cells & regenerative medicine. 2017;13:14.

    Article  Google Scholar 

  170. Jaillard A, Hommel M, Moisan A, Zeffiro TA, Favre-Wiki IM, Barbieux-Guillot M, et al. Autologous mesenchymal stem cells improve motor recovery in subacute ischemic stroke: a randomized clinical trial. Transl Stroke Res. 2020:1–14.

  171. Manuel GE, Johnson T, Liu D. Therapeutic angiogenesis of exosomes for ischemic stroke. International journal of physiology, pathophysiology and pharmacology. 2017;9:188.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Deng L, Peng Q, Wang H, Pan J, Zhou Y, Pan K, et al. Intrathecal injection of allogenic bone marrow-derived mesenchymal stromal cells in treatment of patients with severe ischemic stroke: study protocol for a randomized controlled observer-blinded trial. Transl Stroke Res. 2019;10:170–7.

    Article  PubMed  Google Scholar 

  173. Sato M, Sato K. Maternal inheritance of mitochondrial DNA by diverse mechanisms to eliminate paternal mitochondrial DNA. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2013;1833:1979–84.

    Article  CAS  Google Scholar 

  174. Luo S, Valencia CA, Zhang J, Lee N-C, Slone J, Gui B, et al. Biparental inheritance of mitochondrial DNA in humans. Proc Natl Acad Sci. 2018;115:13039–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Tan AS, Baty JW, Dong L-F, Bezawork-Geleta A, Endaya B, Goodwin J, et al. Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab. 2015;21:81–94.

    Article  CAS  PubMed  Google Scholar 

  176. Islam MN, Das SR, Emin MT, Wei M, Sun L, Westphalen K, et al. Mitochondrial transfer from bone-marrow–derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med. 2012;18:759–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Gao L, Zhang Z, Lu J, Pei G. Mitochondria are dynamically transferring between human neural cells and Alexander disease-associated GFAP mutations impair the astrocytic transfer. Front Cell Neurosci. 2019;13:316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Rustom A, Saffrich R, Markovic I, Walther P, Gerdes H-H. Nanotubular highways for intercellular organelle transport. Science. 2004;303:1007–10.

    Article  CAS  PubMed  Google Scholar 

  179. Mathivanan S, Ji H, Simpson RJ. Exosomes: extracellular organelles important in intercellular communication. J Proteome. 2010;73:1907–20.

    Article  CAS  Google Scholar 

  180. Koyanagi M, Brandes RP, Haendeler J, Zeiher AM, Dimmeler S. Cell-to-cell connection of endothelial progenitor cells with cardiac myocytes by nanotubes: a novel mechanism for cell fate changes? Circ Res. 2005;96:1039–41.

    Article  CAS  PubMed  Google Scholar 

  181. Önfelt B, Nedvetzki S, Benninger RK, Purbhoo MA, Sowinski S, Hume AN, et al. Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria. J Immunol. 2006;177:8476–83.

    Article  PubMed  Google Scholar 

  182. Wang X, Gerdes H-H. Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell Death Differ. 2015;22:1181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Sáenz-de-Santa-María I, Bernardo-Castiñeira C, Enciso E, García-Moreno I, Chiara JL, Suarez C, et al. Control of long-distance cell-to-cell communication and autophagosome transfer in squamous cell carcinoma via tunneling nanotubes. Oncotarget. 2017;8:20939.

  184. Yasuda K, Park H-C, Ratliff B, Addabbo F, Hatzopoulos AK, Chander P, et al. Adriamycin nephropathy: a failure of endothelial progenitor cell-induced repair. Am J Pathol. 2010;176:1685–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Spees JL, Olson SD, Whitney MJ, Prockop DJ. Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci. 2006;103:1283–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Phinney DG, Di Giuseppe M, Njah J, Sala E, Shiva S, St Croix CM, et al. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat Commun. 2015;6:8472.

    Article  CAS  PubMed  Google Scholar 

  187. He K, Shi X, Zhang X, Dang S, Ma X, Liu F, et al. Long-distance intercellular connectivity between cardiomyocytes and cardiofibroblasts mediated by membrane nanotubes. Cardiovasc Res. 2011;92:39–47.

    Article  CAS  PubMed  Google Scholar 

  188. Paliwal S, Chaudhuri R, Agrawal A, Mohanty S. Regenerative abilities of mesenchymal stem cells through mitochondrial transfer. J Biomed Sci. 2018;25:31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Hayakawa K, Bruzzese M, Chou SH, Ning M, Ji X, Lo EH. Extracellular mitochondria for therapy and diagnosis in acute central nervous system injury. JAMA neurology. 2018;75:119–22.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Ahmad T, Mukherjee S, Pattnaik B, Kumar M, Singh S, Kumar M, et al. Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. EMBO J. 2014;33:994–1010.

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Moschoi R, Imbert V, Nebout M, Chiche J, Mary D, Prebet T, et al. Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy. 2016;128:253–264.

  192. Liu K, Ji K, Guo L, Wu W, Lu H, Shan P, et al. Mesenchymal stem cells rescue injured endothelial cells in an in vitro ischemia-reperfusion model via tunneling nanotube like structure-mediated mitochondrial transfer. Microvasc Res. 2014;92:10–8.

    Article  CAS  PubMed  Google Scholar 

  193. Nakajima A, Kurihara H, Yagita H, Okumura K, Nakano H. Mitochondrial extrusion through the cytoplasmic vacuoles during cell death. J Biol Chem. 2008;283(35):24128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Maeda A, Fadeel B. Mitochondria released by cells undergoing TNF-α-induced necroptosis act as danger signals. Cell Death Dis. 2014;5:e1312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. English K, Shepherd A, Nzor N-E, Trinh R, Kavelaars A, Heijnen CJ. Astrocytes improve neuronal health after cisplatin treatment through mitochondrial transfer. In: bioRxiv; 2019.

    Google Scholar 

  196. Babenko V, Silachev D, Popkov V, Zorova L, Pevzner I, Plotnikov E, et al. Miro1 enhances mitochondria transfer from multipotent mesenchymal stem cells (MMSC) to neural cells and improves the efficacy of cell recovery. Molecules. 2018;23:687.

    Article  PubMed Central  CAS  Google Scholar 

  197. Las G, Shirihai OS. Miro1: new wheels for transferring mitochondria. EMBO J. 2014;33:939–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Debattisti V, Gerencser AA, Saotome M, Das S, Hajnóczky G. ROS control mitochondrial motility through p38 and the motor adaptor Miro/Trak. Cell Rep. 2017;21:1667–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Marlein CR, Piddock RE, Mistry JJ, Zaitseva L, Hellmich C, Horton RH, et al. CD38-driven mitochondrial trafficking promotes bioenergetic plasticity in multiple myeloma. Cancer Res. 2019;79:2285–97.

    Article  CAS  PubMed  Google Scholar 

  200. Hirokawa N, Noda Y. Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics. Physiol Rev. 2008;88:1089–118.

    Article  CAS  PubMed  Google Scholar 

  201. Shen J, Zhang J-H, Xiao H, Wu J-M, He K-M, Lv Z-Z, et al. Mitochondria are transported along microtubules in membrane nanotubes to rescue distressed cardiomyocytes from apoptosis. Cell Death Dis. 2018;9:81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Qiu G, Zheng G, Ge M, Wang J, Huang R, Shu Q, et al. Mesenchymal stem cell-derived extracellular vesicles affect disease outcomes via transfer of microRNAs. Stem Cell Res Ther. 2018;9:320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Qiu G, Zheng G, Ge M, Wang J, Huang R, Shu Q, et al. Functional proteins of mesenchymal stem cell-derived extracellular vesicles. Stem Cell Res Ther. 2019;10:359.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Konari N, Nagaishi K, Kikuchi S, Fujimiya M. Mitochondria transfer from mesenchymal stem cells structurally and functionally repairs renal proximal tubular epithelial cells in diabetic nephropathy in vivo. Sci Rep. 2019;9:1–14.

    Article  CAS  Google Scholar 

  205. Rackham CL, Hubber EL, Czajka A, Malik AN, King AJ, Jones PM. Optimizing beta cell function through mesenchymal stromal cell-mediated mitochondria transfer. Stem Cells. 2020;38:574–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Montgomery MK. Mitochondrial dysfunction and diabetes: is mitochondrial transfer a friend or foe? Biology. 2019;8:33.

    Article  CAS  PubMed Central  Google Scholar 

  207. Yun CW, Lee SH. Enhancement of functionality and therapeutic efficacy of cell-based therapy using mesenchymal stem cells for cardiovascular disease. Int J Mol Sci. 2019;20:982.

    Article  CAS  PubMed Central  Google Scholar 

  208. Li C, Cheung MKH, Han S, Zhang Z, Chen L, Chen J, et al. Mesenchymal stem cells and their mitochondrial transfer: a double-edged sword. Biosci Rep. 2019;39.

  209. Bodart-Santos V, de Carvalho LR, de Godoy MA, Batista AF, Saraiva LM, Lima LG, et al. Extracellular vesicles derived from human Wharton’s jelly mesenchymal stem cells protect hippocampal neurons from oxidative stress and synapse damage induced by amyloid-β oligomers. Stem Cell Res Ther. 2019;10:1–13.

    Article  CAS  Google Scholar 

  210. Morrison TJ, Jackson MV, Cunningham EK, Kissenpfennig A, McAuley DF, O’Kane CM, et al. Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer. Am J Respir Crit Care Med. 2017;196:1275–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Hogan SE, Rodriguez Salazar MP, Cheadle J, Glenn R, Medrano C, Petersen TH, et al. Mesenchymal stromal cell-derived exosomes improve mitochondrial health in pulmonary arterial hypertension. Am J Phys Lung Cell Mol Phys. 2019;316:L723–L37.

    CAS  Google Scholar 

  212. Sinclair KA, Yerkovich ST, Hopkins PM-A, Chambers DC. Characterization of intercellular communication and mitochondrial donation by mesenchymal stromal cells derived from the human lung. Stem Cell Res Ther. 2016;7:91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Fergie N, Todd N, McClements L, McAuley D, O'Kane C, Krasnodembskaya A. Hypercapnic acidosis induces mitochondrial dysfunction and impairs the ability of mesenchymal stem cells to promote distal lung epithelial repair. FASEB J. 2019;33:5585–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Jackson MV, Krasnodembskaya AD. Analysis of mitochondrial transfer in direct co-cultures of human monocyte-derived macrophages (MDM) and mesenchymal stem cells (MSC). Bio-protocol. 2017;7:e2255.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Naji A, Favier B, Deschaseaux F, Rouas-Freiss N, Eitoku M, Suganuma N. Mesenchymal stem/stromal cell function in modulating cell death. Stem Cell Res Ther. 2019;10:56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Rodriguez A-M, Nakhle J, Griessinger E, Vignais M-L. Intercellular mitochondria trafficking highlighting the dual role of mesenchymal stem cells as both sensors and rescuers of tissue injury. Cell Cycle. 2018;17:712–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Plotnikov EY, Khryapenkova TG, Galkina SI, Sukhikh GT, Zorov DB. Cytoplasm and organelle transfer between mesenchymal multipotent stromal cells and renal tubular cells in co-culture. Exp Cell Res. 2010;316:2447–55.

    Article  CAS  PubMed  Google Scholar 

  218. Vallabhaneni KC, Haller H, Dumler I. Vascular smooth muscle cells initiate proliferation of mesenchymal stem cells by mitochondrial transfer via tunneling nanotubes. Stem Cells Dev. 2012;21:3104–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Acquistapace A, Bru T, Lesault PF, Figeac F, Coudert AE, Le Coz O, et al. Human mesenchymal stem cells reprogram adult cardiomyocytes toward a progenitor-like state through partial cell fusion and mitochondria transfer. Stem Cells. 2011;29:812–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Pasquier J, Guerrouahen BS, Al Thawadi H, Ghiabi P, Maleki M, Abu-Kaoud N, et al. Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance. J Transl Med. 2013;11:1–14.

    Article  CAS  Google Scholar 

  221. Caicedo A, Fritz V, Brondello J-M, Ayala M, Dennemont I, Abdellaoui N, et al. MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function. Sci Rep. 2015;5:9073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Jiang D, Gao F, Zhang Y, Wong DSH, Li Q, Tse H-F, et al. Mitochondrial transfer of mesenchymal stem cells effectively protects corneal epithelial cells from mitochondrial damage. Cell Death & Disease. 2016;7:e2467-e.

    Article  CAS  Google Scholar 

  223. Jackson MV, Morrison TJ, Doherty DF, McAuley DF, Matthay MA, Kissenpfennig A, et al. Mitochondrial transfer via tunneling nanotubes is an important mechanism by which mesenchymal stem cells enhance macrophage phagocytosis in the in vitro and in vivo models of ARDS. Stem Cells. 2016;34:2210–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Zhang Y, Yu Z, Jiang D, Liang X, Liao S, Zhang Z, et al. iPSC-MSCs with high intrinsic MIRO1 and sensitivity to TNF-α yield efficacious mitochondrial transfer to rescue anthracycline-induced cardiomyopathy. Stem cell reports. 2016;7:749–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Li C-J, Chen P-K, Sun L-Y, Pang C-Y. Enhancement of mitochondrial transfer by antioxidants in human mesenchymal stem cells. Oxidative Med Cell Longev. 2017;2017:8510805.

    Google Scholar 

  226. Yao Y, Fan XL, Jiang D, Zhang Y, Li X, Xu ZB, et al. Connexin 43-mediated mitochondrial transfer of iPSC-MSCs alleviates asthma inflammation. Stem Cell Reports. 2018;11:1120–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Paliwal S, Chaudhuri R, Agrawal A, Mohanty S. Human tissue-specific MSCs demonstrate differential mitochondria transfer abilities that may determine their regenerative abilities. Stem Cell Res Ther. 2018;9:1–9.

    Article  Google Scholar 

  228. Mobarak H, Heidarpour M, Tsai P-SJ, Rezabakhsh A, Rahbarghazi R, Nouri M, et al. Autologous mitochondrial microinjection; a strategy to improve the oocyte quality and subsequent reproductive outcome during aging. Cell & Bioscience. 2019;9:95.

    Article  Google Scholar 

  229. Ribeiro-Rodrigues TM, Martins-Marques T, Morel S, Kwak BR, Girão H. Role of connexin 43 in different forms of intercellular communication—gap junctions, extracellular vesicles and tunnelling nanotubes. J Cell Sci. 2017;130:3619–30.

    CAS  PubMed  Google Scholar 

  230. Bae SH, Ryu H, Rhee KJ, Oh JE, Baik SK, Shim KY, et al. L-ascorbic acid 2-phosphate and fibroblast growth factor-2 treatment maintains differentiation potential in bone marrow-derived mesenchymal stem cells through expression of hepatocyte growth factor. Growth Factors. 2015;33:71–8.

    Article  CAS  PubMed  Google Scholar 

  231. Shaban S, El-Husseny MWA, Abushouk AI, Salem AMA, Mamdouh M, Abdel-Daim MM. Effects of antioxidant supplements on the survival and differentiation of stem cells. Oxidative Med Cell Longev. 2017;2017:5032102.

    Article  CAS  Google Scholar 

  232. Fujisawa K, Hara K, Takami T, Okada S, Matsumoto T, Yamamoto N, et al. Evaluation of the effects of ascorbic acid on metabolism of human mesenchymal stem cells. Stem Cell Res Ther. 2018;9:93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Babenko VA, Silachev DN, Zorova LD, Pevzner IB, Khutornenko AA, Plotnikov EY, et al. Improving the post-stroke therapeutic potency of mesenchymal multipotent stromal cells by Cocultivation with cortical neurons: the role of crosstalk between cells. Stem Cells Transl Med. 2015;4:1011–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Ahmad T, Mukherjee S, Pattnaik BR, Kumar M, Singh S, Rehman R, et al. Miro 1 knockdown in stem cells inhibits mitochondrial donation mediated rescue of bronchial epithelial injury. Biophys J. 2013;659a:104.

    Google Scholar 

  235. Bergfeld SA, DeClerck YA. Bone marrow-derived mesenchymal stem cells and the tumor microenvironment. Cancer Metastasis Rev. 2010;29:249–61.

    Article  PubMed  Google Scholar 

  236. Jung Y, Kim JK, Shiozawa Y, Wang J, Mishra A, Joseph J, et al. Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis. Nat Commun. 2013;4:1–11.

    Google Scholar 

  237. Jing Y, Han Z, Liu Y, Sun K, Zhang S, Jiang G, et al. Mesenchymal stem cells in inflammation microenvironment accelerates hepatocellular carcinoma metastasis by inducing epithelial-mesenchymal transition. PLoS One. 2012;7:e43272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Mombo BN, Gerbal-Chaloin S, Bokus A, Daujat-Chavanieu M, Jorgensen C, Hugnot J-P, et al. MitoCeption: transferring isolated human MSC mitochondria to glioblastoma stem cells. JoVE (Journal of Visualized Experiments). 2017:e55245.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mishan Wu or Seyed Esmaeil Khoshnam.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, M., Guo, J., Wu, B. et al. Mesenchymal Stem Cell-Mediated Mitochondrial Transfer: a Therapeutic Approach for Ischemic Stroke. Transl. Stroke Res. 12, 212–229 (2021). https://doi.org/10.1007/s12975-020-00853-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-020-00853-6

Keywords

Navigation