Skip to main content

Advertisement

Log in

ICAM-1null C57BL/6 Mice Are Not Protected from Experimental Ischemic Stroke

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Accumulation of neutrophils in the brain is a hallmark of cerebral ischemia and considered central in exacerbating tissue injury. Intercellular adhesion molecule (ICAM)-1 is upregulated on brain endothelial cells after ischemic stroke and considered pivotal in neutrophil recruitment as ICAM-1-deficient mouse lines were found protected from experimental stroke. Translation of therapeutic inhibition of ICAM-1 into the clinic however failed. This prompted us to investigate stroke pathogenesis in Icam1tm1Alb C57BL/6 mutants, a true ICAM-1null mouse line. Performing transient middle cerebral artery occlusion, we found that absence of ICAM-1 did not ameliorate stroke pathology at acute time points after reperfusion. Near-infrared imaging showed comparable accumulation of neutrophils in the ischemic hemispheres of ICAM-1null and wild type C57BL/6 mice. We also isolated equal numbers of neutrophils from the ischemic brains of ICAM-1null and wild type C57BL/6 mice. Immunostaining of the brains showed neutrophils to equally accumulate in the leptomeninges and brain parenchymal vessels of ICAM-1null and wild type C57BL/6 mice. In addition, the lesion size was comparable in ICAM-1null and wild type mice. Our study demonstrates that absence of ICAM-1 neither inhibits cerebral ischemia-induced accumulation of neutrophils in the brain nor provides protection from ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Neuwelt EA, Bauer B, Fahlke C, Fricker G, Iadecola C, Janigro D, et al. Engaging neuroscience to advance translational research in brain barrier biology. Nat Rev Neurosci. 2011;12(3):169–82. https://doi.org/10.1038/nrn2995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Engelhardt B, Carare RO, Bechmann I, Flugel A, Laman JD, Weller RO. Vascular, glial, and lymphatic immune gateways of the central nervous system. Acta Neuropathol. 2016;132(3):317–38. https://doi.org/10.1007/s00401-016-1606-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stanimirovic DB, Friedman A. Pathophysiology of the neurovascular unit: disease cause or consequence? JCBFM. 2012;32:1207–21.

    CAS  Google Scholar 

  4. Engelhardt B, Ransohoff RM. Capture, crawl, cross: the T cell code to breach the blood-brain barriers. Trends Immunol. 2012;33(12):579–89. https://doi.org/10.1016/j.it.2012.07.004.

    Article  CAS  PubMed  Google Scholar 

  5. Owens T, Bechmann I, Engelhardt B. Perivascular spaces and the two steps to neuroinflammation. J Neuropath Exp Neurol. 2008;67(12):1113–21. https://doi.org/10.1097/NEN.0b013e31818f9ca8.

    Article  PubMed  Google Scholar 

  6. Gelderblom M, Sobey CG, Kleinschnitz C, Magnus T. Danger signals in stroke. Ageing Res Rev. 2015;24(Pt A):77–82. https://doi.org/10.1016/j.arr.2015.07.004.

    Article  PubMed  Google Scholar 

  7. Barone FC, Feuerstein GZ. Inflammatory mediators and stroke: new opportunities for novel therapeutics. JCBFM. 1999;19:819–34.

    CAS  Google Scholar 

  8. Okada Y, Copeland BR, Mori E, Tung MM, Thomas WS, del Zoppo GJ. P-selectin and intercellular adhesion molecule-1 expression after focal brain ischemia and reperfusion. Stroke. 1994;25(1):202–11. https://doi.org/10.1161/01.STR.25.1.202.

    Article  CAS  PubMed  Google Scholar 

  9. Enzmann G, Mysiorek C, Gorina R, Cheng YJ, Ghavampour S, Hannocks MJ, et al. The neurovascular unit as a selective barrier to polymorphonuclear granulocyte (PMN) infiltration into the brain after ischemic injury. Acta Neuropathol. 2013;125(3):395–412. https://doi.org/10.1007/s00401-012-1076-3.

    Article  PubMed  Google Scholar 

  10. Jander S, Kraemer M, Schroeter M, Witte OW, Stoll G. Lymphocytic infiltration and expression of intercellular adhesion molecule-1 in photochemically induced ischemia of the rat cortex. JCBFM. 1995;15:42–51.

    CAS  Google Scholar 

  11. Garcia JH, Liu KF, Yoshida Y, Lian J, Chen S, del Zoppo GJ. Influx of leukocytes and platelets in an evolving brain infarct (Wistar rat). Am J Pathol. 1994;144(1):188–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Akopov SE, Simonian NA, Grigorian GS. Dynamics of polymorphonuclear leukocyte accumulation in acute cerebral infarction and their correlation with brain tissue damage. Stroke. 1996;27(10):1739–43. https://doi.org/10.1161/01.STR.27.10.1739.

    Article  CAS  PubMed  Google Scholar 

  13. Barone FC, Schmidt DB, Hillegass LM, Price WJ, White RF, Feuerstein GZ, et al. Reperfusion increases neutrophils and leukotriene B4 receptor binding in rat focal ischemia. Stroke. 1992;23(9):1337–47; discussion 47-8. https://doi.org/10.1161/01.STR.23.9.1337.

    Article  CAS  PubMed  Google Scholar 

  14. Perez-de-Puig I, Miro-Mur F, Ferrer-Ferrer M, Gelpi E, Pedragosa J, Justicia C, et al. Neutrophil recruitment to the brain in mouse and human ischemic stroke. Acta Neuropathol. 2015;129(2):239–57. https://doi.org/10.1007/s00401-014-1381-0.

    Article  CAS  PubMed  Google Scholar 

  15. Connolly ES Jr, Winfree CJ, Springer TA, Naka Y, Liao H, Yan SD, et al. Cerebral protection in homozygous null ICAM-1 mice after middle cerebral artery occlusion. Role of neutrophil adhesion in the pathogenesis of stroke. J Clin Invest. 1996;97(1):209–16. https://doi.org/10.1172/JCI118392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Soriano SG, Lipton SA, Wang YF, Xiao M, Springer TA, Gutierrez-Ramos JC, et al. Intercellular adhesion molecule-1-deficient mice are less susceptible to cerebral ischemia-reperfusion injury. Ann Neurol. 1996;39(5):618–24. https://doi.org/10.1002/ana.410390511.

    Article  CAS  PubMed  Google Scholar 

  17. Investigators. Use of anti-ICAM-1 therapy in ischemic stroke: results of the Enlimomab Acute Stroke Trial. Neurol. 2001;57:1428–34.

    Article  Google Scholar 

  18. Becker KJ. Anti-leukocyte antibodies: LeukArrest (Hu23F2G) and Enlimomab (R6.5) in acute stroke. Curr Med Res Opin. 2002;18(Suppl 2):s18–22. https://doi.org/10.1185/030079902125000688.

    Article  PubMed  Google Scholar 

  19. Xu H, Gonzalo JA, St Pierre Y, Williams IR, Kupper TS, Cotran RS, et al. Leukocytosis and resistance to septic shock in intercellular adhesion molecule 1-deficient mice. J Exp Med. 1994;180(1):95–109. https://doi.org/10.1084/jem.180.1.95.

    Article  CAS  PubMed  Google Scholar 

  20. Sligh JE Jr, Ballantyne CM, Rich SS, Hawkins HK, Smith CW, Bradley A, et al. Inflammatory and immune responses are impaired in mice deficient in intercellular adhesion molecule 1. Proc Nat Acad Sci USA. 1993;90(18):8529–33. https://doi.org/10.1073/pnas.90.18.8529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van Den Engel NK, Heidenthal E, Vinke A, Kolb H, Martin S. Circulating forms of intercellular adhesion molecule (ICAM)-1 in mice lacking membranous ICAM-1. Blood. 2000;95:1350–5.

    Google Scholar 

  22. Rieckmann P, Michel U, Albrecht M, Bruck W, Wockel L, Felgenhauer K. Soluble forms of intercellular adhesion molecule-1 (ICAM-1) block lymphocyte attachment to cerebral endothelial cells. J Neuroimmunol. 1995;60(1-2):9–15. https://doi.org/10.1016/0165-5728(95)00047-6.

    Article  CAS  PubMed  Google Scholar 

  23. Hu X, Wohler JE, Dugger KJ, Barnum SR. Beta2-integrins in demyelinating disease: not adhering to the paradigm. J Leuk Biol. 2010;87(3):397–403. https://doi.org/10.1189/jlb.1009654.

    Article  CAS  Google Scholar 

  24. Ramos TN, Bullard DC, Barnum SR. ICAM-1: isoforms and phenotypes. J Immunol. 2014;192(10):4469–74. https://doi.org/10.4049/jimmunol.1400135.

    Article  CAS  PubMed  Google Scholar 

  25. Dunne JL, Collins RG, Beaudet AL, Ballantyne CM, Ley K. Mac-1, but not LFA-1, uses intercellular adhesion molecule-1 to mediate slow leukocyte rolling in TNF-alpha-induced inflammation. J Immunol. 2003;171(11):6105–11. https://doi.org/10.4049/jimmunol.171.11.6105.

    Article  CAS  PubMed  Google Scholar 

  26. Bullard DC, Hu X, Schoeb TR, Collins RG, Beaudet AL, Barnum SR. Intercellular adhesion molecule-1 expression is required on multiple cell types for the development of experimental autoimmune encephalomyelitis. J Immunol. 2007;178(2):851–7. https://doi.org/10.4049/jimmunol.178.2.851.

    Article  CAS  PubMed  Google Scholar 

  27. Endres M, Fink K, Zhu J, Stagliano NE, Bondada V, Geddes JW, et al. Neuroprotective effects of gelsolin during murine stroke. J Clin Invest. 1999;103(3):347–54. https://doi.org/10.1172/JCI4953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bederson JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL, Bartkowski H. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke. 1986;17(3):472–6. https://doi.org/10.1161/01.STR.17.3.472.

    Article  CAS  PubMed  Google Scholar 

  29. Gorina R, Lyck R, Vestweber D, Engelhardt B. Beta2 integrin-mediated crawling on endothelial ICAM-1 and ICAM-2 is a prerequisite for transcellular neutrophil diapedesis across the inflamed blood-brain barrier. J Immunol. 2014;192:324–37.

    Article  CAS  PubMed  Google Scholar 

  30. Vaas M, Enzmann G, Perinat T, Siler U, Reichenbach J, Licha K, et al. Non-invasive near-infrared fluorescence imaging of the neutrophil response in a mouse model of transient cerebral ischemia. JCBFM. 2017;37(8):2833–2847.

    Article  Google Scholar 

  31. Reiss Y, Hoch G, Deutsch U, Engelhardt B. T cell interaction with ICAM-1-deficient endothelium in vitro: essential role for ICAM-1 and ICAM-2 in transendothelial migration of T cells. Eur J Immunol. 1998;28(10):3086–99. https://doi.org/10.1002/(SICI)1521-4141(199810)28:10<3086::AID-IMMU3086>3.0.CO;2-Z.

    Article  CAS  PubMed  Google Scholar 

  32. Engelhardt B, Laschinger M, Schulz M, Samulowitz U, Vestweber D, Hoch G. The development of experimental autoimmune encephalomyelitis in the mouse requires alpha4-integrin but not alpha4beta7-integrin. J Clin Invest. 1998;102(12):2096–105. https://doi.org/10.1172/JCI4271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Borges E, Tietz W, Steegmaier M, Moll T, Hallmann R, Hamann A, et al. P-selectin glycoprotein ligand-1 (PSGL-1) on T helper 1 but not on T helper 2 cells binds to P-selectin and supports migration into inflamed skin. J Exp Med. 1997;185(3):573–8. https://doi.org/10.1084/jem.185.3.573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Daley JM, Thomay AA, Connolly MD, Reichner JS, Albina JE. Use of Ly6G-specific monoclonal antibody to deplete neutrophils in mice. J Leuk Biol. 2008;83(1):64–70. https://doi.org/10.1189/jlb.0407247.

    Article  CAS  Google Scholar 

  35. Doring A, Wild M, Vestweber D, Deutsch U, Engelhardt B. E- and P-selectin are not required for the development of experimental autoimmune encephalomyelitis in C57BL/6 and SJL mice. J Immunol. 2007;179(12):8470–9. https://doi.org/10.4049/jimmunol.179.12.8470.

    Article  PubMed  Google Scholar 

  36. Jalkanen S, Saari S, Kalimo H, Lammintausta K, Vainio E, Leino R, et al. Lymphocyte migration into the skin: the role of lymphocyte homing receptor (CD44) and endothelial cell antigen (HECA-452). J Invest Dermatol. 1990;94(6):786–92. https://doi.org/10.1111/1523-1747.ep12874646.

    Article  CAS  PubMed  Google Scholar 

  37. Engelhardt B, Conley FK, Kilshaw PJ, Butcher EC. Lymphocytes infiltrating the CNS during inflammation display a distinctive phenotype and bind to VCAM-1 but not to MAdCAM-1. Int Immunol. 1995;7(3):481–91. https://doi.org/10.1093/intimm/7.3.481.

    Article  CAS  PubMed  Google Scholar 

  38. Neumann J, Riek-Burchardt M, Herz J, Doeppner TR, Konig R, Hutten H, et al. Very-late-antigen-4 (VLA-4)-mediated brain invasion by neutrophils leads to interactions with microglia, increased ischemic injury and impaired behavior in experimental stroke. Acta Neuropathol. 2015;129(2):259–77. https://doi.org/10.1007/s00401-014-1355-2.

    Article  CAS  PubMed  Google Scholar 

  39. Barkalow FJ, Goodman MJ, Gerritsen ME, Mayadas TN. Brain endothelium lack one of two pathways of P-selectin-mediated neutrophil adhesion. Blood. 1996;88(12):4585–93.

    CAS  PubMed  Google Scholar 

  40. Krams M, Lees KR, Hacke W, Grieve AP, Orgogozo JM, Ford GA. Acute stroke therapy by inhibition of neutrophils (ASTIN): an adaptive dose-response study of UK-279,276 in acute ischemic stroke. Stroke. 2003;34(11):2543–8. https://doi.org/10.1161/01.STR.0000092527.33910.89.

    Article  CAS  PubMed  Google Scholar 

  41. Deddens LH, van Tilborg GAF, van der Marel K, Hunt H, van der Toorn A, Viergever MA, et al. In vivo molecular MRI of ICAM-1 expression on endothelium and leukocytes from subacute to chronic stages after experimental stroke. Transl Stroke Res. 2017;8(5):440–8. https://doi.org/10.1007/s12975-017-0536-4.

    Article  CAS  PubMed Central  Google Scholar 

  42. Fan Z, McArdle S, Marki A, Mikulski Z, Gutierrez E, Engelhardt B, et al. Neutrophil recruitment limited by high-affinity bent beta2 integrin binding ligand in cis. Nat Commun. 2016;7:12658. https://doi.org/10.1038/ncomms12658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hu X, Barnum SR, Wohler JE, Schoeb TR, Bullard DC. Differential ICAM-1 isoform expression regulates the development and progression of experimental autoimmune encephalomyelitis. Mol Immunol. 2010;47(9):1692–700. https://doi.org/10.1016/j.molimm.2010.03.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Carrano A, Hoozemans JJ, van der Vies SM, van Horssen J, de Vries HE, Rozemuller AJ. Neuroinflammation and blood-brain barrier changes in capillary amyloid angiopathy. Neurodegener Dis. 2012;10(1-4):329–31. https://doi.org/10.1159/000334916.

    Article  CAS  PubMed  Google Scholar 

  45. Tyagi N, Roberts AM, Dean WL, Tyagi SC, Lominadze D. Fibrinogen induces endothelial cell permeability. Mol Cell Biochem. 2008;307(1-2):13–22. https://doi.org/10.1007/s11010-007-9579-2.

    Article  CAS  PubMed  Google Scholar 

  46. Tailor A, Cooper D, Granger DN. Platelet-vessel wall interactions in the microcirculation. Microcirculation. 2005;12(3):275–85. https://doi.org/10.1080/10739680590925691.

    Article  CAS  PubMed  Google Scholar 

  47. Chaichana KL, Pradilla G, Huang J, Tamargo RJ. Role of inflammation (leukocyte-endothelial cell interactions) in vasospasm after subarachnoid hemorrhage. World Neurosurg. 2010;73(1):22–41. https://doi.org/10.1016/j.surneu.2009.05.027.

    Article  PubMed  Google Scholar 

  48. Provencio JJ, Fu X, Siu A, Rasmussen PA, Hazen SL, Ransohoff RM. CSF neutrophils are implicated in the development of vasospasm in subarachnoid hemorrhage. Neurocrit Care. 2010;12(2):244–51. https://doi.org/10.1007/s12028-009-9308-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Provencio JJ, Altay T, Smithason S, Moore SK, Ransohoff RM. Depletion of Ly6G/C(+) cells ameliorates delayed cerebral vasospasm in subarachnoid hemorrhage. J Neuroimmunol. 2011;232(1-2):94–100. https://doi.org/10.1016/j.jneuroim.2010.10.016.

    Article  CAS  PubMed  Google Scholar 

  50. Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature. 2014;508(7494):55–60. https://doi.org/10.1038/nature13165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the Microscopy Imaging Center (MIC) of the University of Bern, especially Dr. Roch-Philippe Charles (IBMM), for support in image analysis. We express our sincere thanks to Claudia Blatti, Therese Périnat, and Albert Witt for technical help in this study. We thank Dr. Urban Deutsch for help with the mouse breeding and genotyping logistics. Additional thanks go to Katrin Bissegger, Isabelle Wymann, and Svetlozar Tsonev for professional caretaking of the mice.

Author Contribution Statement

G.E. and M.V. performed experiments including surgeries and data analysis, and G.E. wrote the manuscript. S.P. performed the experiments, analyzed the data, and prepared some figures. B.E. and J.K. outlined and supervised the project, evaluated data, and edited the manuscript.

Funding

This study was funded by the EU FP7 European Stroke Network (grant nos. 201024 and 202213 to BE), the Swiss Heart Foundation (to BE and GE), and the Swiss National Science Foundation (grant PZ00P3_136822), and Hartmann-Müller Foundation (to JK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Britta Engelhardt.

Ethics declarations

Ethical Approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed. In detail, in vivo experiments were approved by the Veterinary Office of the Canton of Bern (Switzerland) (licenses BE79/11, BE127/14). Animal research was performed in accordance to the Swiss legislation on the protection of animals and in compliance with the ARRIVE guidelines for reporting animal research (https://www.nc3rs.org.uk/arrive-guidelines).

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Suppl. Fig. 1

Absence of ICAM-1 does not induce compensatory upregulation of endothelial cell adhesion molecules in the ischemic hemisphere following 60-min ischemia and 24-h reperfusion. ICAM-1null and wild type (WT) C57BL/6 mice displayed numerous VCAM-1 positive blood vessels both in the ipsilateral cortex (Fig. 1(a’, d’)) and in the meningeal compartment (Fig. 1(c’, f’)). In relation to ICAM-1-positive blood vessels in WT C57BL/6 mice (Fig. 1(a–c)), VCAM-1-positive vessels outnumbered the former and were distributed rather evenly throughout the lesioned hemisphere. Lack of ICAM-1 immunoreactivity in ICAM-1null C57BL/6 mice confirmed the complete absence of ICAM-1 isoforms (Fig. 1(d–f)). We observed de novo synthesis of P-selectin in parenchymal microvessels (Fig. 1(a”–b”, e”–f”)) in C57BL/6 mice of either genotype. The scale bar equals 50 μm and applies to all images (GIF 689 kb)

High-resolution image (TIFF 3465 kb)

Suppl. Fig. 2

ICAM-1 is dispensable for neutrophil accumulation in blood vessels following stroke and reperfusion. Double immunofluorescence staining of neutrophils (Ly6G, green) and ICAM-1 (red) revealed that ICAM-1 is not required for localization of neutrophils to microvessels in the ischemic hemisphere. Both ICAM-1-positive brain microvessels (wild type (WT) mouse, left column, arrow) and blood vessels deficient of ICAM-1 (ICAM-1null, right column, arrowheads) permitted neutrophil adhesion. The scale bar equals 50 μm (GIF 40 kb)

High-resolution image (TIFF 9147 kb)

Suppl. Fig. 3

VCAM-1 does not exclusively mediate neutrophil adhesion to brain microvessels after stroke. Double immunofluorescence staining of neutrophils (Ly6G, green) and VCAM-1 (red) confirmed neutrophil endothelial interaction in both the presence (arrow) and absence (arrowhead) of VCAM-1 following transient ischemia and reperfusion in wild type (WT) (a–d) and ICAM-1null (a’–d’) C57BL/6 mice. The scale bar equals 50 μm (GIF 54 kb)

High-resolution image (TIFF 6053 kb)

Suppl. Fig. 4

Expression of P-selectin does not favor neutrophil localization to brain microvessels after stroke. Double immunofluorescence staining of neutrophils (Ly6G, green) and P-selectin (red) demonstrated no preferential localization of neutrophils to P-selectin positive microvessels in the ischemic cortex of wild type (WT) (left column) and ICAM-1null (right column) C57BL/6 mice. Neutrophils localized to the perivascular compartment in both the presence (white arrow) and absence (white arrowhead) of P-selectin. Occasionally, neutrophils were observed adjacent to platelets, which express P-selectin as well (yellow arrow). Irrespective of the expression of P-selectin, neutrophils were also detected in the leptomeningeal compartment (yellow arrowhead). The scale bar equals 50 μm (GIF 84 kb)

High-resolution image (TIFF 5633 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enzmann, G.U., Pavlidou, S., Vaas, M. et al. ICAM-1null C57BL/6 Mice Are Not Protected from Experimental Ischemic Stroke. Transl. Stroke Res. 9, 608–621 (2018). https://doi.org/10.1007/s12975-018-0612-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-018-0612-4

Keywords

Navigation