Kloska SP, Wintermark M, Engelhorn T, Fiebach JB. Acute stroke magnetic resonance imaging: current status and future perspective. Neuroradiology. 2010;52(3):189–201. https://doi.org/10.1007/s00234-009-0637-1.
Article
PubMed
Google Scholar
Hilger T, Niessen F, Diedenhofen M, Hossmann KA, Hoehn M. Magnetic resonance angiography of thromboembolic stroke in rats: indicator of recanalization probability and tissue survival after recombinant tissue plasminogen activator treatment. J Cereb Blood Flow Metab. 2002;22(6):652–62. https://doi.org/10.1097/00004647-200206000-00003.
Article
PubMed
Google Scholar
Kucharczyk J, Mintorovitch J, Asgari HS, Moseley M. Diffusion/perfusion MR imaging of acute cerebral ischemia. Magn Reson Med. 1991;19(2):311–5. https://doi.org/10.1002/mrm.1910190220.
Article
PubMed
CAS
Google Scholar
Moseley ME, Cohen Y, Mintorovitch J, Chileuitt L, Shimizu H, Kucharczyk J, et al. Early detection of regional cerebral ischemia in cats: comparison of diffusion- and T2-weighted MRI and spectroscopy. Magn Reson Med. 1990;14(2):330–46. https://doi.org/10.1002/mrm.1910140218.
Article
PubMed
CAS
Google Scholar
Davis D, Ulatowski J, Eleff S, Izuta M, Mori S, Shungu D, et al. Rapid monitoring of changes in water diffusion coefficients during reversible ischemia in cat and rat brain. Magn Reson Med. 1994;31(4):454–60. https://doi.org/10.1002/mrm.1910310416.
Article
PubMed
CAS
Google Scholar
Kato H, Kogure K, Ohtomo H, Izumiyama M, Tobita M, Matsui S, et al. Characterization of experimental ischemic brain edema utilizing proton nuclear magnetic resonance imaging. J Cereb Blood Flow Metab. 1986;6(2):212–21. https://doi.org/10.1038/jcbfm.1986.34.
Article
PubMed
CAS
Google Scholar
Benveniste H, Hedlund LW, Johnson GA. Mechanism of detection of acute cerebral ischemia in rats by diffusion-weighted magnetic resonance microscopy. Stroke. 1992;23(5):746–54. https://doi.org/10.1161/01.STR.23.5.746.
Article
PubMed
CAS
Google Scholar
Calamante F, Lythgoe MF, Pell GS, Thomas DL, King MD, Busza AL, et al. Early changes in water diffusion, perfusion, T1, and T2 during focal cerebral ischemia in the rat studied at 8.5 T. Magn Reson Med. 1999;41(3):479–85. https://doi.org/10.1002/(SICI)1522-2594(199903)41:3<479::AID-MRM9>3.0.CO;2-2.
Article
PubMed
CAS
Google Scholar
Grohn OHJ, Kettunen MI, Makela HI, Penttonen M, Pitkanen A, Lukkarinen JA, et al. Early detection of irreversible cerebral ischemia in the rat using dispersion of the magnetic resonance imaging relaxation time, T1rho. J Cereb Blood Flow Metab. 2000;20(10):1457–66. https://doi.org/10.1097/00004647-200010000-00007.
Article
PubMed
Google Scholar
Li TQ, van Gelderen P, Merkle H, Talagala L, Koretsky AP, Duyn JH. Extensive heterogeneity in white matter intensity in high-resolution T2*-weighted MRI of the human brain at 7.0 T. NeuroImage. 2006;32(3):1032–40. https://doi.org/10.1016/j.neuroimage.2006.05.053.
Article
PubMed
Google Scholar
Pu Y, Liu Y, Hou J, Fox PT, Gao JH. Demonstration of the medullary lamellae of the human red nucleus with high-resolution gradient-echo MR imaging. Am J Neuroradiol. 2000;21(7):1243–7.
PubMed
CAS
Google Scholar
Budde J, Shajan G, Hoffmann J, Uğurbil K, Pohmann R. Human imaging at 9.4 T using T(2)*-, phase-, and susceptibility-weighted contrast. Magn Reson Med. 2011;65(2):544–50. https://doi.org/10.1002/mrm.22632.
Article
PubMed
Google Scholar
Rauscher A, Sedlacik J, Barth M, Mentzel HJ, Reichenbach JR. Magnetic susceptibility-weighted MR phase imaging of the human brain. Am J Neuroradiol. 2005;26(4):736–42.
PubMed
Google Scholar
Haacke EM, Xu Y, Cheng YCN, Reichenbach JR. Susceptibility weighted imaging (SWI). Magn Reson Med. 2004;52(3):612–8. https://doi.org/10.1002/mrm.20198.
Article
PubMed
Google Scholar
Reichenbach JR, Haacke EM. High-resolution BOLD venographic imaging: a window into brain function. NMR Biomed. 2001;14(7-8):453–67. https://doi.org/10.1002/nbm.722.
Article
PubMed
CAS
Google Scholar
Bai Q, Zhao Z, Sui H, Xie X, Chen J, Yang J, et al. Susceptibility-weighted imaging for cerebral microbleed detection in super-acute ischemic stroke patients treated with intravenous thrombolysis. Neurol Res. 2013;35(6):586–93. https://doi.org/10.1179/1743132813Y.0000000179.
Article
PubMed
Google Scholar
Kao HW, Tsai FY, Hasso AN. Predicting stroke evolution: comparison of susceptibility-weighted MR imaging with MR perfusion. Eur Radiol. 2012;22(7):1397–403. https://doi.org/10.1007/s00330-012-2387-4.
Article
PubMed
Google Scholar
Luo Y, Gong Z, Zhou Y, Chang B, Chai C, Liu T, et al. Increased susceptibility of asymmetrically prominent cortical veins correlates with misery perfusion in patients with occlusion of the middle cerebral artery. Eur Radiol. 2017;27(6):2381–90. https://doi.org/10.1007/s00330-016-4593-y.
Article
PubMed
Google Scholar
Chen CY, Chen CI, Tsai FY, Tsai PH, Chan WP. Prominent vessel sign on susceptibility-weighted imaging in acute stroke: prediction of infarct growth and clinical outcome. PLoS One. 2015;10(6):e0131118. https://doi.org/10.1371/journal.pone.0131118.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schweser F, Sommer K, Deistung A, Reichenbach JR. Quantitative susceptibility mapping for investigating subtle susceptibility variations in the human brain. NeuroImage. 2012;62(3):2083–100. https://doi.org/10.1016/j.neuroimage.2012.05.067.
Article
PubMed
Google Scholar
Deistung A, Schäfer A, Schweser F, Biedermann U, Turner R, Reichenbach JR. Toward in vivo histology: a comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase-, and R2*-imaging at ultra-high magnetic field strength. NeuroImage. 2013;65:299–314. https://doi.org/10.1016/j.neuroimage.2012.09.055.
Article
PubMed
Google Scholar
Schweser F, Deistung A, Lehr BW, Reichenbach JR. Differentiation between diamagnetic and paramagnetic cerebral lesions based on magnetic susceptibility mapping. Med Phys. 2010;37(10):5165–78. https://doi.org/10.1118/1.3481505.
Article
PubMed
Google Scholar
Klohs J, Deistung A, Schweser F, Grandjean J, Dominietto M, Waschkies C, et al. Detection of cerebral microbleeds with quantitative susceptibility mapping in the ArcAbeta mouse model of cerebral amyloidosis. J Cereb Blood Flow Metab. 2011;31(12):2282–92. https://doi.org/10.1038/jcbfm.2011.118.
Article
PubMed
PubMed Central
Google Scholar
Langkammer C, Schweser F, Krebs N, Deistung A, Goessler W, Scheurer E, et al. Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study. NeuroImage. 2012;62(3):1593–9. https://doi.org/10.1016/j.neuroimage.2012.05.049.
Article
PubMed
PubMed Central
Google Scholar
van Bergen JM, Li X, Hua J, Schreiner SJ, Steininger SC, Quevenco FC, et al. Colocalization of cerebral iron with amyloid beta in mild cognitive impairment. Sci Rep. 2016;6(1):35514. https://doi.org/10.1038/srep35514.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fan AP, Schäfer A, Huber L, Lampe L, von Smuda S, Möller HE, et al. Baseline oxygenation in the brain: correlation between respiratory-calibration and susceptibility methods. NeuroImage. 2016;125:920–31. https://doi.org/10.1016/j.neuroimage.2015.11.007.
Article
PubMed
Google Scholar
Klohs J, Deistung A, Ielacqua GD, Seuwen A, Kindler D, Schweser F, et al. Quantitative assessment of microvasculopathy in arcAβ mice with USPIO-enhanced gradient echo MRI. J Cereb Blood Flow Metab. 2016;36(9):1614–24. https://doi.org/10.1177/0271678X15621500.
Article
PubMed
CAS
Google Scholar
Uwano I, Kudo K, Sato R, Ogasawara K, Kameda H, Nomura JI, et al. Noninvasive assessment of oxygen extraction fraction in chronic ischemia using quantitative susceptibility mapping at 7 Tesla. Stroke. 2017;48(8):2136–41. https://doi.org/10.1161/STROKEAHA.117.017166.
Article
PubMed
Google Scholar
Hsieh MC, Tsai CY, Liao MC, Yang JL, Su CH, Chen JH. Quantitative susceptibility mapping-based microscopy of magnetic resonance venography (QSM-mMRV) for in vivo morphologically and functionally assessing cerebromicrovasculature in rat stroke model. PLoS One. 2016;11(3):e0149602. https://doi.org/10.1371/journal.pone.0149602.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vaas M, Enzmann G, Perinat T, Siler U, Reichenbach J, Licha K, et al. Non-invasive near-infrared fluorescence imaging of the neutrophil response in a mouse model of transient cerebral ischaemia. J Cereb Blood Flow Metab. 2017;37(8):2833–47. https://doi.org/10.1177/0271678X16676825.
Article
PubMed
CAS
Google Scholar
Vaas M, Ni R, Rudin M, Kipar A, Klohs J. Extracerebral tissue damage in the intraluminal filament mouse model of middle cerebral artery occlusion. Front Neurol. 2017;8:85. https://doi.org/10.3389/fneur.2017.00085.
Article
PubMed
PubMed Central
Google Scholar
Ratering D, Baltes C, Nordmeyer-Massner J, Marek D, Rudin M. Performance of a 200-MHz cryogenic RF probe designed for MRI and MRS of the murine brain. Magn Reson Med. 2008;59(6):1440–7. https://doi.org/10.1002/mrm.21629.
Article
PubMed
CAS
Google Scholar
Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM. The NMR phased array. Magn Reson Med. 1990;16(2):192–225. https://doi.org/10.1002/mrm.1910160203.
Article
PubMed
CAS
Google Scholar
Hammond KE, Lupo JM, Xu D, Metcalf M, Kelley DA, Pelletier D, et al. Development of a robust method for generating 7.0 T multichannel phase images of the brain with application to normal volunteers and patients with neurological diseases. NeuroImage. 2008;39(4):1682–92. https://doi.org/10.1016/j.neuroimage.2007.10.037.
Article
PubMed
Google Scholar
Abdul-Rahman HS, Gdeisat MA, Burton DR, Lalor MJ, Lilley F, Moore CJ. Fast and robust three-dimensional best path phase unwrapping algorithm. Appl Opt. 2007;46(26):6623–35. https://doi.org/10.1364/AO.46.006623.
Article
PubMed
Google Scholar
Wu B, Li W, Avram AV, Gho SM, Liu C. Fast and tissue-optimized mapping of magnetic susceptibility and T2* with multi-echo and multi-shot spirals. NeuroImage. 2012;59(1):297–305. https://doi.org/10.1016/j.neuroimage.2011.07.019.
Article
PubMed
Google Scholar
Schweser F, Deistung A, Lehr BW, Reichenbach JR. Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: an approach to in vivo brain iron metabolism? NeuroImage. 2011;54(4):2789–807. https://doi.org/10.1016/j.neuroimage.2010.10.070.
Article
PubMed
Google Scholar
Li W, Wu B, Liu C. Quantitative susceptibility mapping of human brain reflects spatial variation in tissue composition. NeuroImage. 2011;55(4):1645–56. https://doi.org/10.1016/j.neuroimage.2010.11.088.
Article
PubMed
PubMed Central
Google Scholar
Gerriets T, Stolz E, Walberer M, Müller C, Kluge A, Bachmann A, et al. Noninvasive quantification of brain edema and the space-occupying effect in rat stroke models using magnetic resonance imaging. Stroke. 2004;35(2):566–71. https://doi.org/10.1161/01.STR.0000113692.38574.57.
Article
PubMed
CAS
Google Scholar
Yemisci M, Gursoy-Ozdemir Y, Vural A, Can A, Topalkara K, Dalkara T. Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat Med. 2009;15(9):1031–7. https://doi.org/10.1038/nm.2022.
Article
PubMed
CAS
Google Scholar
Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature. 2014;508(7494):55–60. https://doi.org/10.1038/nature13165.
Article
PubMed
PubMed Central
CAS
Google Scholar
Garcia JH, Yoshida Y, Chen H, Li Y, Zhang ZG, Lian J, et al. Progression from ischemic injury to infarct following middle cerebral artery occlusion in the rat. Am J Pathol. 1993;142(2):623–35.
PubMed
PubMed Central
CAS
Google Scholar
Ito D, Tanaka K, Suzuki S, Dembo T, Fukuuchi Y. Enhanced expression of Iba1, ionized calcium-binding adaptermolecule 1, after transient focal cerebral ischemia in rat brain. Stroke. 2001;32(5):1208–15. https://doi.org/10.1161/01.STR.32.5.1208.
Article
PubMed
CAS
Google Scholar
Sun L, Kuroiwa T, Ishibashi S, Miki K, Li S, Xu H, et al. Two region-dependent pathways of eosinophilic neuronal death after transient cerebral ischemia. Neuropathology. 2009;29(1):45–54. https://doi.org/10.1111/j.1440-1789.2008.00939.x.
Article
PubMed
CAS
Google Scholar
Palmer GC, Peeling J, Corbett D, Del Bigio MR, Hudzik TJ. T2-weighted MRI correlates with long-term histopathology, neurology scores, and skilled motor behavior in a rat stroke model. Ann N Y Acad Sci. 2001;939:283–96.
Article
PubMed
CAS
Google Scholar
Heiss WD, Huber M, Fink GR, Herholz K, Pietrzyk U, Wagner R, et al. Progressive derangement of periinfarct viable tissue in ischemic stroke. J Cereb Blood Flow Metab. 1992;12(2):193–203. https://doi.org/10.1038/jcbfm.1992.29.
Article
PubMed
CAS
Google Scholar
Pauling L, Coryell CD. The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin. Proc Natl Acad Sci U S A. 1936;22(4):210–6. https://doi.org/10.1073/pnas.22.4.210.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sun H, Wilman AH. Quantitative susceptibility mapping using single-shot echo-planar imaging. Magn Reson Med. 2015;7:1932–8.
Article
Google Scholar
Langkammer C, Bredies K, Poser BA, Barth M, Reishofer G, Fan AP, et al. Fast quantitative susceptibility mapping using 3D EPI and total generalized variation. NeuroImage. 2015;111:622–30. https://doi.org/10.1016/j.neuroimage.2015.02.041.
Article
PubMed
Google Scholar
Bilgic B, Gagoski BA, Cauley SF, Fan AP, Polimeni JR, Grant PE, et al. Wave-CAIPI for highly accelerated 3D imaging. Magn Reson Med. 2015;73(6):2152–62. https://doi.org/10.1002/mrm.25347.
Article
PubMed
Google Scholar
Bilgic B, Xie L, Dibb R, Langkammer C, Mutluay A, Ye H, et al. Rapid multi-orientation quantitative susceptibility mapping. NeuroImage. 2016;125:1131–41. https://doi.org/10.1016/j.neuroimage.2015.08.015.
Article
PubMed
Google Scholar
Schweser F, Deistung A, Sommer K, Reichenbach JR. Toward online reconstruction of quantitative susceptibility maps: superfast dipole inversion. Magn Reson Med. 2013;69(6):1582–94. https://doi.org/10.1002/mrm.24405.
Article
PubMed
Google Scholar