Skip to main content
Log in

Ischemic Preconditioning Protects Astrocytes against Oxygen Glucose Deprivation Via the Nuclear Erythroid 2-Related Factor 2 Pathway

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Induction of ischemic preconditioning (IPC) represents a potential therapy against cerebral ischemia by activation of adaptive pathways and modulation of mitochondria to induce ischemic tolerance to various cells and tissues. Mitochondrial dysfunction has been ascribed to contribute to numerous neurodegenerative conditions and cerebral ischemia. Nuclear erythroid 2-related factor 2 (Nrf2) is a transcription factor that has traditionally been involved in upregulating cellular antioxidant systems to combat oxidative stress in the brain; however, the association of Nrf2 with mitochondria in the brain remains unclear. In the present study, we investigated the effects of Nrf2 on (i) IPC-induced protection of astrocytes; (ii) OXPHOS protein expression; and (iii) mitochondrial supercomplex formation.

Oxygen-glucose deprivation (OGD) was used as an in vitro model of cerebral ischemia and IPC in cultured rodent astrocytes derived from WT C57Bl/6J and Nrf2−/− mice. OXPHOS proteins were probed via western blotting, and supercomplexes were determined by blue native gel electrophoresis.

IPC-induced cytoprotection in wild-type, but not Nrf2−/− mouse astrocyte cultures following a lethal duration of OGD. In addition, our results suggest that Nrf2 localizes to the outer membrane in non-synaptic brain mitochondria, and that a lack of Nrf2 in vivo produces altered supercomplex formation in mitochondria.

Our findings support a role of Nrf2 in mediating IPC-induced protection in astrocytes, which can profoundly impact the ischemic tolerance of neurons. In addition, we provide novel evidence for the association of Nrf2 to brain mitochondria and supercomplex formation. These studies offer new targets and pathways of Nrf2, which may be heavily implicated following cerebral ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74:1124–36.

    Article  CAS  PubMed  Google Scholar 

  2. Schurr A, Reid KH, Tseng MT, West C, Rigor BM. Adaptation of adult brain tissue to anoxia and hypoxia in vitro. Brain Res. 1986;374:244–8.

    Article  CAS  PubMed  Google Scholar 

  3. Dave KR, Saul I, Prado R, Busto R, Perez-Pinzon MA. Remote organ ischemic preconditioning protect brain from ischemic damage following asphyxial cardiac arrest. Neurosci Lett. 2006;404:170–5.

    Article  CAS  PubMed  Google Scholar 

  4. Della-Morte D, Dave KR, DeFazio RA, Bao YC, Raval AP, Perez-Pinzon MA. Resveratrol pretreatment protects rat brain from cerebral ischemic damage via a sirtuin 1-uncoupling protein 2 pathway. Neuroscience. 2009;159:993–1002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kim EJ, Raval AP, Hirsch N, Perez-Pinzon MA. Ischemic preconditioning mediates cyclooxygenase-2 expression via nuclear factor-kappa b activation in mixed cortical neuronal cultures. Transl Stroke Res. 2010;1:40–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Perez-Alvarez A, Araque A. Astrocyte-neuron interaction at tripartite synapses. Curr Drug Targets. 2013;14:1220–4.

    Article  CAS  PubMed  Google Scholar 

  7. Johri A, Beal MF. Mitochondrial dysfunction in neurodegenerative diseases. J Pharmacol Exp Ther. 2012;342:619–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang B, Cao W, Biswal S, Dore S. Carbon monoxide-activated nrf2 pathway leads to protection against permanent focal cerebral ischemia. Stroke. 2011;42:2605–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhao X, Sun G, Zhang J, Strong R, Dash PK, Kan YW, et al. Transcription factor nrf2 protects the brain from damage produced by intracerebral hemorrhage. Stroke. 2007;38:3280–6.

    Article  CAS  PubMed  Google Scholar 

  10. Bell KF, Fowler JH, Al-Mubarak B, Horsburgh K, Hardingham GE. Activation of nrf2-regulated glutathione pathway genes by ischemic preconditioning. Oxidative Med Cell Longev. 2011;2011:689524.

    Article  Google Scholar 

  11. Kitteringham NR, Abdullah A, Walsh J, Randle L, Jenkins RE, Sison R, et al. Proteomic analysis of nrf2 deficient transgenic mice reveals cellular defence and lipid metabolism as primary nrf2-dependent pathways in the liver. J Proteome. 2010;73:1612–31.

    Article  CAS  Google Scholar 

  12. Ryan MT, Hoogenraad NJ. Mitochondrial-nuclear communications. Annu Rev Biochem. 2007;76:701–22.

    Article  CAS  PubMed  Google Scholar 

  13. Lenth RV. Statistical power calculations. J Anim Sci. 2007;85:E24–9.

    Article  CAS  PubMed  Google Scholar 

  14. Kaech S, Banker G. Culturing hippocampal neurons. Nat Protoc. 2006;1:2406–15.

    Article  CAS  PubMed  Google Scholar 

  15. Kim EJ, Raval AP, Perez-Pinzon MA. Preconditioning mediated by sublethal oxygen-glucose deprivation-induced cyclooxygenase-2 expression via the signal transducers and activators of transcription 3 phosphorylation. J Cereb Blood Flow Metab. 2008;28:1329–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. SY X, YM W, Ji Z, Gao XY, Pan SYA. modified technique for culturing primary fetal rat cortical neurons. J Biomed Biotechnol. 2012;2012:803930.

    Google Scholar 

  17. Dave KR, DeFazio RA, Raval AP, Torraco A, Saul I, Barrientos A, et al. Ischemic preconditioning targets the respiration of synaptic mitochondria via protein kinase c epsilon. J Neurosci. 2008;28:4172–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Degasperi A, Birtwistle MR, Volinsky N, Rauch J, Kolch W, Kholodenko BN. Evaluating strategies to normalise biological replicates of western blot data. PLoS One. 2014;9:e87293.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sunderhaus S, Eubel H, Braun HP. Two-dimensional blue native/blue native polyacrylamide gel electrophoresis for the characterization of mitochondrial protein complexes and supercomplexes. Methods Mol Biol. 2007;372:315–24.

    Article  CAS  PubMed  Google Scholar 

  20. Shih AY, Johnson DA, Wong G, Kraft AD, Jiang L, Erb H, et al. Coordinate regulation of glutathione biosynthesis and release by nrf2-expressing glia potently protects neurons from oxidative stress. J Neurosci. 2003;23:3394–406.

    CAS  PubMed  Google Scholar 

  21. Stokfisz K, Ledakowicz-Polak A, Zagorski M, Zielinska M. Ischaemic preconditioning - current knowledge and potential future applications after 30 years of experience. Adv Med Sci. 2017;62:307–16.

    Article  PubMed  Google Scholar 

  22. Narayanan SV, Dave KR, Saul I, Perez-Pinzon MA. Resveratrol preconditioning protects against cerebral ischemic injury via nuclear erythroid 2-related factor 2. Stroke. 2015;

  23. Lo SC, Hannink M. Pgam5 tethers a ternary complex containing keap1 and nrf2 to mitochondria. Exp Cell Res. 2008;314:1789–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tondera D, Czauderna F, Paulick K, Schwarzer R, Kaufmann J, Santel A. The mitochondrial protein mtp18 contributes to mitochondrial fission in mammalian cells. J Cell Sci. 2005;118:3049–59.

    Article  CAS  PubMed  Google Scholar 

  25. Dennerlein S, Wang C, Rehling P. Plasticity of mitochondrial translation. Trends Cell Biol. 2017;27:712–21.

    Article  CAS  PubMed  Google Scholar 

  26. Medeiros DM. Assessing mitochondria biogenesis. Methods. 2008;46:288–94.

    Article  CAS  PubMed  Google Scholar 

  27. Maranzana E, Barbero G, Falasca AI, Lenaz G, Genova ML. Mitochondrial respiratory supercomplex association limits production of reactive oxygen species from complex i. Antioxid Redox Signal. 2013;19:1469–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Genova ML, Lenaz G. Functional role of mitochondrial respiratory supercomplexes. Biochim Biophys Acta. 2014;1837:427–43.

    Article  CAS  PubMed  Google Scholar 

  29. Andrienko TN, Pasdois P, Pereira GC, Ovens MJ, Halestrap AP. The role of succinate and ros in reperfusion injury—a critical appraisal. J Mol Cell Cardiol. 2017;110:1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vanden Hoek TL, Becker LB, Shao Z, Li C, Schumacker PT. Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes. J Biol Chem. 1998;273:18092–8.

    Article  Google Scholar 

  31. Sun JZ, Tang XL, Park SW, Qiu Y, Turrens JF, Bolli R. Evidence for an essential role of reactive oxygen species in the genesis of late preconditioning against myocardial stunning in conscious pigs. J Clin Invest. 1996;97:562–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stauch KL, Purnell PR, Fox HS. Quantitative proteomics of synaptic and nonsynaptic mitochondria: Insights for synaptic mitochondrial vulnerability. J Proteome Res. 2014;13:2620–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jain A, Lamark T, Sjottem E, Larsen KB, Awuh JA, Overvatn A, et al. P62/sqstm1 is a target gene for transcription factor nrf2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem. 2010;285:22576–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Inami Y, Waguri S, Sakamoto A, Kouno T, Nakada K, Hino O, et al. Persistent activation of nrf2 through p62 in hepatocellular carcinoma cells. J Cell Biol. 2011;193:275–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ichimura Y, Waguri S, Sou YS, Kageyama S, Hasegawa J, Ishimura R, et al. Phosphorylation of p62 activates the keap1-nrf2 pathway during selective autophagy. Mol Cell. 2013;51:618–31.

    Article  CAS  PubMed  Google Scholar 

  36. Piantadosi CA, Carraway MS, Babiker A, Suliman HB. Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via nrf2-mediated transcriptional control of nuclear respiratory factor-1. Circ Res. 2008;103:1232–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tufekci KU, Civi Bayin E, Genc S, Genc K. The nrf2/are pathway: a promising target to counteract mitochondrial dysfunction in Parkinson’s disease. Parkinson’s disease. 2011;2011:314082.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None

Funding

This study was funded by grants from the National Institutes of Health, National Institute of Neurological Disease and Stroke (NINDS) NS45676, NS054147, NS34773, F31 NS080344.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Perez-Pinzon.

Ethics declarations

Conflict of Interest

There authors declare that they have no conflicts of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Electronic Supplementary Materials

ESM 1

Supplementary Fig. 1 Genotyping of Nrf2−/− and WT C57Bl/6J mice. LAC Z denotes the portion of the Nrf2 locus that has been replaced with a LAC Z and Neomycin resistance gene cassette. Presence of LAC Z indicates animals that have this gene in place of exon 4 and exon 5 of the Nrf2 gene and denotes a knockout animal. Presence of WT allele denotes presence of Nrf2 gene. Presence of both LAC Z and WT gene indicate a heterozygous knockout animal. Genotyping was performed by Transnetyx, Inc. (Cordova, TN, USA). (TIFF 306 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narayanan, S.V., Dave, K.R. & Perez-Pinzon, M.A. Ischemic Preconditioning Protects Astrocytes against Oxygen Glucose Deprivation Via the Nuclear Erythroid 2-Related Factor 2 Pathway. Transl. Stroke Res. 9, 99–109 (2018). https://doi.org/10.1007/s12975-017-0574-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-017-0574-y

Keywords

Navigation