Skip to main content

Advertisement

Log in

A Post-stroke Therapeutic Regimen with Omega-3 Polyunsaturated Fatty Acids that Promotes White Matter Integrity and Beneficial Microglial Responses after Cerebral Ischemia

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

White matter injury induced by ischemic stroke elicits sensorimotor impairments, which can be further deteriorated by persistent proinflammatory responses. We previously reported that delayed and repeated treatments with omega-3 polyunsaturated fatty acids (n-3 PUFAs) improve spatial cognitive functions and hippocampal integrity after ischemic stroke. In the present study, we report a post-stroke n-3 PUFA therapeutic regimen that not only confers protection against neuronal loss in the gray matter but also promotes white matter integrity. Beginning 2 h after 60 min of middle cerebral artery occlusion (MCAO), mice were randomly assigned to receive intraperitoneal docosahexaenoic acid (DHA) injections (10 mg/kg, daily for 14 days), alone or in combination with dietary fish oil (FO) supplements starting 5 days after MCAO. Sensorimotor functions, gray and white matter injury, and microglial responses were examined up to 28 days after MCAO. Our results showed that DHA and FO combined treatment-facilitated long-term sensorimotor recovery and demonstrated greater beneficial effect than DHA injections alone. Mechanistically, n-3 PUFAs not only offered direct protection on white matter components, such as oligodendrocytes, but also potentiated microglial M2 polarization, which may be important for white matter repair. Notably, the improved white matter integrity and increased M2 microglia were strongly linked to the mitigation of sensorimotor deficits after stroke upon n-3 PUFA treatments. Together, our results suggest that post-stroke DHA injections in combination with FO dietary supplement benefit white matter restoration and microglial responses, thereby dictating long-term functional improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fields RD. A new mechanism of nervous system plasticity: activity-dependent myelination. Nat Rev Neurosci. 2015;16(12):756–67.

    Article  CAS  PubMed  Google Scholar 

  2. Franklin RJ, Ffrench-Constant C. Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci. 2008;9(11):839–55.

    Article  CAS  PubMed  Google Scholar 

  3. Ho PW, Reutens DC, Phan TG, Wright PM, Markus R, Indra I, et al. Is white matter involved in patients entered into typical trials of neuroprotection? Stroke. 2005;36(12):2742–4.

    Article  PubMed  Google Scholar 

  4. Kissela B, Lindsell CJ, Kleindorfer D, Alwell K, Moomaw CJ, Woo D, et al. Clinical prediction of functional outcome after ischemic stroke: the surprising importance of periventricular white matter disease and race. Stroke. 2009;40(2):530–6.

    Article  PubMed  Google Scholar 

  5. Khan MB, Hoda MN, Vaibhav K, Giri S, Wang P, Waller JL, et al. Remote ischemic postconditioning: harnessing endogenous protection in a murine model of vascular cognitive impairment. Transl Stroke Res. 2015;6(1):69–77.

    Article  PubMed  Google Scholar 

  6. Gladstone DJ, Black SE, Hakim AM. Heart, Stroke Foundation of Ontario Centre of excellence in Stroke R. Toward wisdom from failure: lessons from neuroprotective stroke trials and new therapeutic directions. Stroke. 2002;33(8):2123–36.

    Article  PubMed  Google Scholar 

  7. Shi H, Hu X, Leak RK, Shi Y, C A, Suenaga J, et al. Demyelination as a rational therapeutic target for ischemic or traumatic brain injury. Exp Neurol. 2015;272:17–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sakamoto M, Miyazaki Y, Kitajo K, Yamaguchi A. VGF, which is induced transcriptionally in stroke brain, enhances neurite extension and confers protection against ischemia in vitro. Transl Stroke Res. 2015;6(4):301–8.

    Article  CAS  PubMed  Google Scholar 

  9. Plemel JR, Keough MB, Duncan GJ, Sparling JS, Yong VW, Stys PK, et al. Remyelination after spinal cord injury: is it a target for repair? Prog Neurobiol. 2014;117:54–72.

    Article  CAS  PubMed  Google Scholar 

  10. Kuffler DP. An assessment of current techniques for inducing axon regeneration and neurological recovery following peripheral nerve trauma. Prog Neurobiol. 2014;116:1–12.

    Article  PubMed  Google Scholar 

  11. Van de Velde S, De Groef L, Stalmans I, Moons L, Van Hove I. Towards axonal regeneration and neuroprotection in glaucoma: rho kinase inhibitors as promising therapeutics. Prog Neurobiol. 2015;131:105–19.

    Article  CAS  PubMed  Google Scholar 

  12. Hu X, Leak RK, Shi Y, Suenaga J, Gao Y, Zheng P, et al. Microglial and macrophage polarization-new prospects for brain repair. Nat Rev Neurol. 2015;11(1):56–64.

    Article  PubMed  Google Scholar 

  13. Rossi D. Astrocyte physiopathology: at the crossroads of intercellular networking, inflammation and cell death. Prog Neurobiol. 2015;130:86–120.

    Article  CAS  PubMed  Google Scholar 

  14. Wang G, Shi Y, Jiang X, Leak RK, Hu X, Wu Y, et al. HDAC inhibition prevents white matter injury by modulating microglia/macrophage polarization through the GSK3beta/PTEN/Akt axis. Proc Natl Acad Sci U S A. 2015;112(9):2853–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang G, Zhang J, Hu X, Zhang L, Mao L, Jiang X, et al. Microglia/macrophage polarization dynamics in white matter after traumatic brain injury. J Cereb Blood Flow Metab. 2013;33(12):1864–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL, et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci. 2013;16(9):1211–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mallucci G, Peruzzotti-Jametti L, Bernstock JD, Pluchino S. The role of immune cells, glia and neurons in white and gray matter pathology in multiple sclerosis. Prog Neurobiol. 2015;127-128:1–22.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang W, Wang H, Zhang H, Leak RK, Shi Y, Hu X, et al. Dietary supplementation with omega-3 polyunsaturated fatty acids robustly promotes neurovascular restorative dynamics and improves neurological functions after stroke. Exp Neurol. 2015;272:170–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang J, Shi Y, Zhang L, Zhang F, Hu X, Zhang W, et al. Omega-3 polyunsaturated fatty acids enhance cerebral angiogenesis and provide long-term protection after stroke. Neurobiol Dis. 2014;68:91–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang M, Wang S, Mao L, Leak RK, Shi Y, Zhang W, et al. Omega-3 fatty acids protect the brain against ischemic injury by activating Nrf2 and upregulating heme oxygenase 1. J Neurosci. 2014;34(5):1903–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Eady TN, Khoutorova L, Anzola DV, Hong SH, Obenaus A, Mohd-Yusof A, et al. Acute treatment with docosahexaenoic acid complexed to albumin reduces injury after a permanent focal cerebral ischemia in rats. PLoS One. 2013;8(10):e77237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Eady TN, Khoutorova L, Obenaus A, Mohd-Yusof A, Bazan NG, Belayev L. Docosahexaenoic acid complexed to albumin provides neuroprotection after experimental stroke in aged rats. Neurobiol Dis. 2014;62:1–7.

    Article  CAS  PubMed  Google Scholar 

  23. Eady TN, Khoutorova L, Atkins KD, Bazan NG, Belayev L. Docosahexaenoic acid complexed to human albumin in experimental stroke: neuroprotective efficacy with a wide therapeutic window. Exp Transl Stroke Med. 2012;4(1):19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Williams JJ, Mayurasakorn K, Vannucci SJ, Mastropietro C, Bazan NG. Ten VS et al. N-3 fatty acid rich triglyceride emulsions are neuroprotective after cerebral hypoxic-ischemic injury in neonatal mice. PLoS One. 2013;8(2):e56233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pu H, Jiang X, Hu X, Xia J, Hong D, Zhang W et al. Delayed docosahexaenoic acid treatment combined with dietary supplementation of omega-3 fatty acids promotes long-term neurovascular restoration after ischemic stroke. Transl Stroke Res. 2016.

  26. Pu H, Guo Y, Zhang W, Huang L, Wang G, Liou AK, et al. Omega-3 polyunsaturated fatty acid supplementation improves neurologic recovery and attenuates white matter injury after experimental traumatic brain injury. J Cereb Blood Flow Metab. 2013;33(9):1474–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen S, Zhang H, Pu H, Wang G, Li W, Leak RK, et al. N-3 PUFA supplementation benefits microglial responses to myelin pathology. Sci Rep. 2014;4:7458.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shi Y, Zhang L, Pu H, Mao L, Hu X, Jiang X, et al. Rapid endothelial cytoskeletal reorganization enables early blood-brain barrier disruption and long-term ischaemic reperfusion brain injury. Nat Commun. 2016;7:10523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rosenzweig S, Carmichael ST. Age-dependent exacerbation of white matter stroke outcomes: a role for oxidative damage and inflammatory mediators. Stroke. 2013;44(9):2579–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zuloaga KL, Zhang W, Yeiser LA, Stewart B, Kukino A, Nie X, et al. Neurobehavioral and imaging correlates of hippocampal atrophy in a mouse model of vascular cognitive impairment. Transl Stroke Res. 2015;6(5):390–8.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Soliman S, Ishrat T, Fouda AY, Patel A, Pillai B, Fagan SC. Sequential therapy with minocycline and candesartan improves long-term recovery after experimental stroke. Transl Stroke Res. 2015;6(4):309–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brathwaite S, Macdonald RL. Current management of delayed cerebral ischemia: update from results of recent clinical trials. Transl Stroke Res. 2014;5(2):207–26.

    Article  CAS  PubMed  Google Scholar 

  33. Zhu W, Libal NL, Casper A, Bodhankar S, Offner H, Alkayed NJ, Recombinant T. Cell receptor ligand treatment improves neurological outcome in the presence of tissue plasminogen activator in experimental ischemic stroke. Transl Stroke Res. 2014;5(5):612–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schaar KL, Brenneman MM, Savitz SI. Functional assessments in the rodent stroke model. Exp Transl Stroke Med. 2010;2(1).

  35. Stetler RA, Gao Y, Leak RK, Weng Z, Shi Y, Zhang L, et al. APE1/Ref-1 facilitates recovery of gray and white matter and neurological function after mild stroke injury. Proc Natl Acad Sci U S A. 2016;113(25):E3558–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Han L, Cai W, Mao L, Liu J, Li P, Leak RK, et al. Rosiglitazone promotes white matter integrity and long-term functional recovery after focal cerebral ischemia. Stroke. 2015;46(9):2628–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L. Axonal transection in the lesions of multiple sclerosis. N Engl J Med. 1998;338(5):278–85.

    Article  CAS  PubMed  Google Scholar 

  38. Fancy SP, Harrington EP, Baranzini SE, Silbereis JC, Shiow LR, Yuen TJ, et al. Parallel states of pathological Wnt signaling in neonatal brain injury and colon cancer. Nat Neurosci. 2014;17(4):506–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hu X, Liou AK, Leak RK, Xu M, An C, Suenaga J, et al. Neurobiology of microglial action in CNS injuries: receptor-mediated signaling mechanisms and functional roles. Prog Neurobiol. 2014;119-120:60–84.

    Article  CAS  PubMed  Google Scholar 

  40. An C, Shi Y, Li P, Hu X, Gan Y, Stetler RA, et al. Molecular dialogs between the ischemic brain and the peripheral immune system: dualistic roles in injury and repair. Prog Neurobiol. 2014;115:6–24.

    Article  CAS  PubMed  Google Scholar 

  41. Hu X, Li P, Guo Y, Wang H, Leak RK, Chen S, et al. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke. 2012;43(11):3063–70.

    Article  CAS  PubMed  Google Scholar 

  42. Pantoni L, Garcia JH, Gutierrez JA. Cerebral white matter is highly vulnerable to ischemia. Stroke. 1996;27(9):1641–6 discussion 7.

    Article  CAS  PubMed  Google Scholar 

  43. Liu X, Ye R, Yan T, Yu SP, Wei L, Xu G, et al. Cell based therapies for ischemic stroke: from basic science to bedside. Prog Neurobiol. 2014;115:92–115.

    Article  PubMed  Google Scholar 

  44. Duncan ID, Brower A, Kondo Y, JF Jr C, Schultz RD. Extensive remyelination of the CNS leads to functional recovery. Proc Natl Acad Sci U S A. 2009;106(16):6832–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chu M, Hu X, Lu S, Gan Y, Li P, Guo Y, et al. Focal cerebral ischemia activates neurovascular restorative dynamics in mouse brain. Front Biosci (Elite Ed). 2012;4:1926–36.

    Article  Google Scholar 

  46. Mandai K, Matsumoto M, Kitagawa K, Matsushita K, Ohtsuki T, Mabuchi T, et al. Ischemic damage and subsequent proliferation of oligodendrocytes in focal cerebral ischemia. Neuroscience. 1997;77(3):849–61.

    Article  CAS  PubMed  Google Scholar 

  47. Hu X, Zhang F, Leak RK, Zhang W, Iwai M, Stetler RA, et al. Transgenic overproduction of omega-3 polyunsaturated fatty acids provides neuroprotection and enhances endogenous neurogenesis after stroke. Curr Mol Med. 2013;13(9):1465–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Syed YA, Baer AS, Lubec G, Hoeger H, Widhalm G, Kotter MR. Inhibition of oligodendrocyte precursor cell differentiation by myelin-associated proteins. Neurosurg Focus. 2008;24(3–4):E5.

    Article  PubMed  Google Scholar 

  49. Segovia KN, McClure M, Moravec M, Luo NL, Wan Y, Gong X, et al. Arrested oligodendrocyte lineage maturation in chronic perinatal white matter injury. Ann Neurol. 2008;63(4):520–30.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Seifert HA, Pennypacker KR. Molecular and cellular immune responses to ischemic brain injury. Transl Stroke Res. 2014;5(5):543–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li L, Tao Y, Tang J, Chen Q, Yang Y, Feng Z, et al. A cannabinoid receptor 2 agonist prevents thrombin-induced blood-brain barrier damage via the inhibition of microglial activation and matrix metalloproteinase expression in rats. Transl Stroke Res. 2015;6(6):467–77.

    Article  CAS  PubMed  Google Scholar 

  52. Zhou Y, Wang Y, Wang J, Anne Stetler R, Yang QW. Inflammation in intracerebral hemorrhage: from mechanisms to clinical translation. Prog Neurobiol. 2014;115:25–44.

    Article  CAS  PubMed  Google Scholar 

  53. Suenaga J, Hu X, Pu H, Shi Y, Hassan SH, Xu M, et al. White matter injury and microglia/macrophage polarization are strongly linked with age-related long-term deficits in neurological function after stroke. Exp Neurol. 2015;272:109–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chang PK, Khatchadourian A, McKinney RA, Maysinger D. Docosahexaenoic acid (DHA): a modulator of microglia activity and dendritic spine morphology. J Neuroinflammation. 2015;12:34.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Tremblay ME, Zhang I, Bisht K, Savage JC, Lecours C, Parent M, et al. Remodeling of lipid bodies by docosahexaenoic acid in activated microglial cells. J Neuroinflammation. 2016;13(1):116.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zhang W, Liu J, Hu X, Li P, Leak RK, Gao Y, et al. N-3 polyunsaturated fatty acids reduce neonatal hypoxic/ischemic brain injury by promoting Phosphatidylserine formation and Akt signaling. Stroke. 2015;46(10):2943–50.

    Article  CAS  PubMed  Google Scholar 

  57. Ransohoff RM. A polarizing question: do M1 and M2 microglia exist? Nat Neurosci. 2016;19(8):987–91.

    Article  CAS  PubMed  Google Scholar 

  58. Pena I, Borlongan CV. Translating G-CSF as an adjunct therapy to stem cell transplantation for stroke. Transl Stroke Res. 2015;6(6):421–9.

    Article  PubMed  Google Scholar 

  59. Liu J, Wang Y, Akamatsu Y, Lee CC, Stetler RA, Lawton MT, et al. Vascular remodeling after ischemic stroke: mechanisms and therapeutic potentials. Prog Neurobiol. 2014;115:138–56.

    Article  PubMed  Google Scholar 

  60. Ruan L, Lau BW, Wang J, Huang L, Zhuge Q, Wang B, et al. Neurogenesis in neurological and psychiatric diseases and brain injury: from bench to bedside. Prog Neurobiol. 2014;115:116–37.

    Article  PubMed  Google Scholar 

  61. Belayev L, Khoutorova L, Atkins KD, Bazan NG. Robust docosahexaenoic acid-mediated neuroprotection in a rat model of transient, focal cerebral ischemia. Stroke. 2009;40(9):3121–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hong SH, Khoutorova L, Bazan NG, Belayev L. Docosahexaenoic acid improves behavior and attenuates blood-brain barrier injury induced by focal cerebral ischemia in rats. Exp Transl Stroke Med. 2015;7(1):3.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Fjell AM, McEvoy L, Holland D, Dale AM, Walhovd KB. Alzheimer’s disease neuroimaging I. What is normal in normal aging? Effects of aging, amyloid and Alzheimer’s disease on the cerebral cortex and the hippocampus. Prog Neurobiol. 2014;117:20–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mandava P, Martini SR, Munoz M, Dalmeida W, Sarma AK, Anderson JA, et al. Hyperglycemia worsens outcome after rt-PA primarily in the large-vessel occlusive stroke subtype. Transl Stroke Res. 2014;5(4):519–25.

    Article  PubMed  Google Scholar 

  65. Hafez S, Coucha M, Bruno A, Fagan SC, Ergul A. Hyperglycemia, acute ischemic stroke, and thrombolytic therapy. Transl Stroke Res. 2014;5(4):442–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ansar S, Chatzikonstantinou E, Wistuba-Schier A, Mirau-Weber S, Fatar M, Hennerici MG, et al. Characterization of a new model of thromboembolic stroke in C57 black/6J mice. Transl Stroke Res. 2014;5(4):526–33.

    Article  CAS  PubMed  Google Scholar 

  67. Mandava P, Shah SD, Sarma AK, Kent TA. An outcome model for intravenous rt-PA in acute ischemic stroke. Transl Stroke Res. 2015;6(6):451–7.

    Article  CAS  PubMed  Google Scholar 

  68. Lapchak PA. Critical early thrombolytic and endovascular reperfusion therapy for acute ischemic stroke victims: a call for adjunct neuroprotection. Transl Stroke Res. 2015;6(5):345–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhou Y, Murugappan SK, Sharma VK. Effect of clot aging and cholesterol content on ultrasound-assisted thrombolysis. Transl Stroke Res. 2014;5(5):627–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by the US Department of Veterans Affairs (VA) RR&D Merit Review RX000420, the US National Institutes of Health grants NS045048, NS091175 and NS095671, the American Heart Association grant 13SDG14570025, and the Chinese Natural Science Foundation grants 81529002, 81171149, 81371306, 81571285 and 81100978. J.C. is a recipient of the VA Senior Research Career Scientist Award. The authors are indebted to Pat Strickler for excellent administrative support.

Author Contributions

Y.S., X.H., Y.G., and J.C. designed the research. X.J., H.P., Z.W., and W.Z. performed the research. X.J. and Y.S. analyzed the data. X.J., H.P., D.H., J.C., and Y.S. wrote the manuscript. All authors reviewed and edited the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Chen or Yejie Shi.

Ethics declarations

All animal procedures were approved by the University of Pittsburgh Institutional Animal Care and Use Committee and performed in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Xiaoyan Jiang and Hongjian Pu contributed equally to this work

Electronic supplementary material

ESM 1

(DOCX 1866 kb)

ESM 2

(DOCX 1239 kb)

ESM 3

(DOCX 1403 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Pu, H., Hu, X. et al. A Post-stroke Therapeutic Regimen with Omega-3 Polyunsaturated Fatty Acids that Promotes White Matter Integrity and Beneficial Microglial Responses after Cerebral Ischemia. Transl. Stroke Res. 7, 548–561 (2016). https://doi.org/10.1007/s12975-016-0502-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-016-0502-6

Keywords

Navigation