Skip to main content

Advertisement

Log in

Translating G-CSF as an Adjunct Therapy to Stem Cell Transplantation for Stroke

  • Opinion Paper
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Among recently investigated stroke therapies, stem cell treatment holds great promise by virtue of their putative ability to replace lost cells, promote endogenous neurogenesis, and produce behavioral and functional improvement through their “bystander effects.” Translating stem cell in the clinic, however, presents a number of technical difficulties. A strategy suggested to enhance therapeutic utility of stem cells is combination therapy, i.e., co-transplantation of stem cells or adjunct treatment with pharmacological agents and substrates, which is assumed to produce more profound therapeutic benefits by circumventing limitations of individual treatments and facilitating complementary brain repair processes. We previously demonstrated enhanced functional effects of co-treatment with granulocyte-colony stimulating factor (G-CSF) and human umbilical cord blood cell (hUCB) transplantation in animal models of traumatic brain injury (TBI). Here, we suggest that the aforementioned combination therapy may also produce synergistic effects in stroke. Accordingly, G-CSF treatment may reduce expression of pro-inflammatory cytokines and enhance neurogenesis rendering a receptive microenvironment for hUCB engraftment. Adjunct treatment of G-CSF with hUCB may facilitate stemness maintenance and guide neural lineage commitment of hUCB cells. Moreover, regenerative mechanisms afforded by G-CSF-mobilized endogenous stem cells, secretion of growth factors by hUCB grafts and G-CSF-recruited endothelial progenitor cells (EPCs), as well as the potential graft–host integration that may promote synaptic circuitry re-establishment could altogether produce more pronounced functional improvement in stroked rats subjected to a combination G-CSF treatment and hUCB transplantation. Nevertheless, differences in pathology and repair processes underlying TBI and stroke deserve consideration when testing the effects of combinatorial G-CSF and hUCB cell transplantation for stroke treatment. Further studies are also required to determine the safety and efficacy of this intervention in both preclinical and clinical stroke studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Koton S, Schneider AL, Rosamond WD, Shahar E, Sang Y, Gottesman RF, et al. Stroke incidence and mortality trends in US communities, 1987 to 2011. JAMA. 2014;312(3):259–68.

    Article  CAS  PubMed  Google Scholar 

  2. World Health Organization. World health report 2004-changing history. Geneva: World Health Organization; 2004.

    Google Scholar 

  3. Donnan GA, Fisher M, Macleod M, Davis SM. Stroke. Lancet. 2008;371:1612–23.

    Article  CAS  PubMed  Google Scholar 

  4. Hafez S, Coucha M, Bruno A, Fagan SC, Ergul A. Hyperglycemia, acute ischemic stroke, and thrombolytic therapy. Transl Stroke Res. 2014;5(4):442–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Lo EH, Dalkara T, Moskowitz MA. Mechanisms, challenges and opportunities in stroke. Nature Rev Neurosci. 2003;4:399–415.

    Article  CAS  Google Scholar 

  6. Hacke W, Kaste M, Bluhmki E, Brozman M, Davalos A. Thrombolysis with alteplase 3 to 4.5 h after acute ischemic stroke. N Eng J Med. 2008;359:1317–29.

    Article  CAS  Google Scholar 

  7. The NINDS, rt-PA Stroke Study Group (1997). Intracerebral hemorrhage after intravenous tPA therapy for ischemic stroke. Stroke. 2007;28:2109–18.

    Google Scholar 

  8. Broderick J, Connolly S, Feldmann E, Hanley D, Kase C, Krieger D, et al. Guidelines for the management of spontaneous intracerebral hemorrhage in adults: 2007 update: a guideline from the American Heart Association/American Stroke Association Stroke Council, High Blood Pressure Research Council, and the Quality of Care and Outcomes in Research Interdisciplinary Working Group. Circulation. 2007;116(16):e391–413.

    Article  PubMed  Google Scholar 

  9. Graham GD. Tissue plasminogen activator for acute ischemic stroke in clinical practice: a meta-analysis of safety data. Stroke. 2003;34:2847–50.

    Article  CAS  PubMed  Google Scholar 

  10. Yip TR, Demaerschalk BM. Estimated cost savings of increased use of intravenous tissue plasminogen activator for acute ischemic stroke in Canada. Stroke. 2007;38:1952–5.

    Article  PubMed  Google Scholar 

  11. Stone LL, Grande A, Low WC. Neural repair and neuroprotection with stem cells in ischemic stroke. Brain Sci. 2013;3(2):599–614.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Sinden JD, Muir KW. Stem cells in stroke treatment: the promise and the challenges. Int J Stroke. 2012;7(5):426–34.

    Article  PubMed  Google Scholar 

  13. Borlongan CV, Koutouzis TK, Jorden JR, Martinez R, Rodriguez AI, Poulos SG, et al. Neural transplantation as an experimental treatment modality for cerebral ischemia. Neurosci Biobehav Rev. 1997;21:79–90.

    Article  CAS  PubMed  Google Scholar 

  14. Nishino H, Borlongan CV. Restoration of function by neural transplantation in the ischemic brain. Prog Brain Res. 2000;127:461–76.

    Article  CAS  PubMed  Google Scholar 

  15. Shinozuka K, Dailey T, Tajiri N, Ishikawa H, Kim DW, Pabon M, et al. Stem cells for neurovascular repair in stroke. J Stem Cell Res Ther. 2013;4(4):12912.

    PubMed Central  PubMed  Google Scholar 

  16. Shinozuka K, Dailey T, Tajiri N, Ishikawa H, Kaneko Y, et al. Stem cell transplantation for neuroprotection in stroke. Brain Sci. 2013;3:239–61.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Cui X, Chopp M, Shehadah A, Zacharek A, Kuzmin-Nichols N, Sanberg D, et al. Therapeutic benefit of treatment of stroke with simvastin and human umbilical cord blood cells: neurogenesis, synaptic plasticity, and axon growth. Cell Transplant. 2012;21:845–56.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Rowe D, Leonardo C, Recio J, Collier L, Willing A, Pennypacker K. Human umbilical cord blood cells protect oligodendrocytes from brain ischemia through Akt signal transduction. J Biol Chem. 2012;287:4177–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Xiao J, Nan Z, Motooka Y, Low WC. Transplantation of a novel cell line population of umbilical cord blood stem cells ameliorates neurological deficits associated with ischemic brain injury. Stem Cells Dev. 2005;14:722–33.

    Article  CAS  PubMed  Google Scholar 

  20. Sanberg PR, Eve DJ, Metcalf C, Borlongan CV. Advantages and challenges of alternative sources of adult-derived stem cells for brain repair in stroke. Prog Brain Res. 2012;201:99–117.

    Article  PubMed  Google Scholar 

  21. Acosta SA, Franzese N, Staples M, Weinbren NL, Babilonia M, Patel J, et al. Human umbilical cord for transplantation therapy in myocardial infarction. J Stem Cell Res Ther. 2013;1 Suppl 4:S4–005.

    Google Scholar 

  22. Sanberg PR, Willing AE, Garbuzova-Davis S, Saporta S, Liu G, Sanberg CD, et al. Umbilical cord blood-derived stem cells and brain repair. Ann N Y Acad Sci. 2005;1049:67–83.

    Article  CAS  PubMed  Google Scholar 

  23. Chung DJ, Choi CB, Lee SH, Kang EH, Lee JH, Hwang SH, et al. Intraarterially delivered human umbilical cord blood-derived mesenchymal stem cells in canine cerebral ischemia. J Neurosci Res. 2009;87:3554–67.

    Article  CAS  PubMed  Google Scholar 

  24. Copeland N, Harris D, Gaballa MA. Human umbilical cord blood stem cells, myocardial infarction and stroke. Clin Med. 2009;9(4):342–5.

    Article  PubMed  Google Scholar 

  25. Vendrame M, Cassady J, Newcomb J, Butler T, Pennypacker KR, Zigova T, et al. Infusion of human umbilical cord blood cells in a rat model of stroke dose-dependently rescues behavioral deficits and reduces infarct volume. Stroke. 2004;35:2390–5.

    Article  PubMed  Google Scholar 

  26. Willing AE, Lixian J, Milliken M, Poulos S, Zigova T, Song S, et al. Intravenous versus intrastriatal cord blood administration in a rodent model of stroke. J Neurosci Res. 2003;73:296–307.

    Article  CAS  PubMed  Google Scholar 

  27. Ilic D, Miere C, Lazic E. Umbilical cord blood cells: clinical trials in non-hematological disorders. Brit Med Bull. 2012;102:43–57.

    Article  CAS  PubMed  Google Scholar 

  28. Newman MB, Willing AE, Manresa JJ, Sanberg CD, Sanberg PR. Cytokines produced by cultured human umbilical cord blood (HUCB) cells: implications for brain repair. Exp Neurol. 2006;199(1):201–8.

    Article  CAS  PubMed  Google Scholar 

  29. Ma J, Liu N, Yi B, Zhang X, Gao BB, Zhang Y, et al. Transplanted hUCB-MSCs migrated to the damaged area by SDF-1/CXCR4 signaling to promote functional recovery after traumatic brain injury in rats. Neurol Res. 2015;37(1):50–6.

    Article  CAS  PubMed  Google Scholar 

  30. Lu D, Sanberg PR, Mahmood A, Li Y, Wang L, Sanchez-Ramos J, et al. Intravenous administration of human umbilical cord blood reduces neurological deficit in the rat after traumatic brain injury. Cell Transplant. 2002;11(3):275–81.

    PubMed  Google Scholar 

  31. Bramlett HM, Dietrich WD. Pathophysiology of cerebral ischemia and brain trauma: similarities and differences. J Cereb Blood Flow Metab. 2004;24(2):133–50.

    Article  PubMed  Google Scholar 

  32. Boltze J, Reich DM, Hau S, Reymann KG, Strassburger M, Lobsien D, et al. Assessment of neuroprotective effects of human umbilical cord blood mononuclear cell subpopulations in vitro and in vivo. Cell Transplant. 2012;21(4):723–37.

    Article  PubMed  Google Scholar 

  33. Henning RJ, Shariff M, Eadula U, Alvarado F, Vasko M, Sanberg PR, et al. Human cord blood mononuclear cells decrease cytokines and inflammatory cells in acute myocardial infarction. Stem Cells Dev. 2008;17(6):1207–19.

    Article  CAS  PubMed  Google Scholar 

  34. Pimentel-Coelho PM, Rosado-de Castro PH, da Fonseca LM B, Otero RM. Umbilical cord blood mononuclear cell transplantation for neonatal hypoxic-ischemic encephalopathy. Pediatr Res. 2012;71:464–73.

    Article  CAS  PubMed  Google Scholar 

  35. dela Peña I, Sanberg PR, Acosta S, Lin SZ, Borlongan CV. G-CSF as an adjunctive therapy with umbilical cord blood cell transplantation for traumatic brain injury. Cell Transplant. 2015;24(3):447–57.

    Article  Google Scholar 

  36. dela Peña I, Sanberg PR, Acosta S, Lin SZ, Borlongan CV. Umbilical cord blood cell and granulocyte-colony stimulating factor: combination therapy for traumatic brain injury. Regen Med. 2014;9(4):409–12.

    Article  PubMed  Google Scholar 

  37. dela Peña I, Sanberg PR, Acosta S, Tajiri N, Lin SZ, Borlongan CV. Stem cells and G-CSF for treating neuroinflammation in traumatic brain injury: aging as a comorbidity factor. J Neurosurg Sci. 2014;58(3):145–9.

    Google Scholar 

  38. Flax JD, Aurora S, Yang C, Simonin C, Wills AM, Billinghurst LL, et al. Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nat Biotechnol. 1998;16(11):1033–9.

    Article  CAS  PubMed  Google Scholar 

  39. Matsuda R, Yoshikawa M, Kimura H, Ouji Y, Nakase H, Nishimura F, et al. Cotransplantation of mouse embryonic stem cells and bone marrow stromal cells following spinal cord injury suppresses tumor development. Cell Transpl. 2009;18:39–54.

    Article  Google Scholar 

  40. Nakagomi N, Nakagomi T, Kubo S, Nakano-Doi A, Saino O, Takata M, et al. Endothelial cells support survival, proliferation, and neuronal differentiation of transplanted adult ischemia-induced neural stem/progenitor cells after cerebral infarction. Stem Cells. 2009;27:2185–95.

    Article  PubMed  Google Scholar 

  41. Zhang W, Yan Q, Zeng YS, Zhang XB, Xiong Y, Wang JM, et al. Implantation of adult bone marrow-derived mesenchymal stem cells transfected with the neurotrophin-3 gene and pretreated with retinoic acid in completely transected spinal cord. Brain Res. 2010;1359:256–71.

    Article  CAS  PubMed  Google Scholar 

  42. Jin K, Mao X, Xie L, Galvan V, Lai B, Wang Y, et al. Transplantation of human neural precursor cells in Matrigel scaffolding improves outcome from focal cerebral ischemia after delayed postischemic treatment in rats. J Cereb Blood Flow Metab. 2010;30:534–44.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Metcalf D. The colony-stimulating factors and cancer. Nat Rev Cancer. 2010;10:425–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Welte K. Discovery of G-CSF and early clinical studies. In: Molineux G et al., editors. Twenty years of G-CSF, milestones in drug therapy. Basel: Springer Basel AG; 2012. p. 15–24.

    Chapter  Google Scholar 

  45. Platzer E, Welte K, Gabrilove JL, Lu L, Harris P, Mertelsmann R, et al. Biological activities of a human pluripotent hematopoietic colony stimulating factor on normal and leukemic cells. J Exp Med. 1985;162:1788–801.

    Article  CAS  PubMed  Google Scholar 

  46. Schneider A, Kuhn HG, Schabitz WR. A role for G-CSF (granulocyte colony stimulating factor) in the central nervous system. Cell Cycle. 2005;4:1753–7.

    Article  CAS  PubMed  Google Scholar 

  47. Diederich K, Sevimli S, Dörr H, Kösters E, Hoppen M, Lewejohann L, et al. The role of granulocyte-colony stimulating factor (G-CSF) in the healthy brain. A characterization of G-CSF-deficient mice. J Neurosci. 2009;29(37):11572–81.

    Article  CAS  PubMed  Google Scholar 

  48. Minnerup J, Sevimli S, Schabitz WR. Granulocyte-colony stimulating factor for stroke treatment: mechanisms of action and efficacy in preclinical studies. Exp Transl Stroke Med. 2009;1:2.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Bao-Guo X. Cell biology and clinical promise of G-CSF: immunomodulation and neuroprotection. J Cell Mol Med. 2007;11(6):1272–90.

    Article  Google Scholar 

  50. Schabitz WR, Kollmar R, Schwaninger M, Juettler E, Bardutzky J, Scholzke MN, et al. Neuroprotective effect of granulocyte colony-stimulating factor after focal cerebral ischemia. Stroke. 2003;34:745–51.

    Article  PubMed  Google Scholar 

  51. Schneider A, Kruger C, Steigleder T, Weber D, Pitzer C, Laage R, et al. The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis. J Clin Invest. 2005;115:2083–98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Komine-Kobayashi M, Zhang N, Liu M, Tanaka R, Hara H, Osaka A, et al. Neuroprotective effect of recombinant human granulocyte colony-stimulating factor in transient focal ischemia of mice. J Cereb Blood Flow Metab. 2006;26:402–13.

    Article  CAS  PubMed  Google Scholar 

  53. Han JL, Blank T, Schwab S, Kollmar R. Inhibited glutamate release by granulocyte-colony stimulating factor after experimental stroke. Neurosci Lett. 2008;432:167–9.

    Article  CAS  PubMed  Google Scholar 

  54. Solaroglu I, Tsubokawa T, Cahill J, Zhang JH. Anti-apoptotic effect of granulocyte-colony stimulating factor after focal cerebral ischemia in the rat. Neuroscience. 2006;143:965–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Solaroglu I, Cahill J, Tsubokawa T, Beskonakli E, Zhang JH. Granulocyte colony-stimulating factor protects the brain against experimental stroke via inhibition of apoptosis and inflammation. Neurol Res. 2009;31(2):167–72.

    Article  CAS  PubMed  Google Scholar 

  56. Shyu WC, Lin SZ, Yang HI, Tzeng YS, Pang CY, Yen PS, et al. Functional recovery of stroke rats induced by granulocyte colony-stimulating factor-stimulated stem cells. Circulation. 2004;110:1847–54.

    Article  CAS  PubMed  Google Scholar 

  57. Wang X, Tsuji K, Lee SR, Ning M, Furie KL, Buchan AM, et al. Mechanisms of hemorrhagic transformation after tissue plasminogen activator reperfusion therapy for ischemic stroke. Stroke. 2004;35:2726–30.

    Article  CAS  PubMed  Google Scholar 

  58. dela Peña IC, Yoo A, Tajiri N, Acosta SA, Ji X, Kaneko Y, et al. Granulocyte colony-stimulating factor attenuates delayed tPA-induced hemorrhagic transformation in ischemic stroke rats by enhancing angiogenesis and vasculogenesis. J Cereb Blood Flow Metab. 2015;35(2):338–46.

    Article  Google Scholar 

  59. Ishikawa H, Tajiri N, Shinozuka K, Vasconcellos J, Kaneko Y, Lee HJ, et al. Vasculogenesis in experimental stroke after human cerebral endothelial cell transplantation. Stroke. 2013;4(12):3473–81.

    Article  Google Scholar 

  60. Kaneko Y, Tajiri N, Shinozuka K, Glover LE, Weinbren NL, Cortes L, et al. Cell therapy for stroke: emphasis on optimizing safety and efficacy profile of endothelial progenitor cells. Curr Pharm Des. 2012;18(25):3731–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Sprigg N, Bath PM, Zhao L, Willmot MR, Gray LJ, Walker MF, et al. Granulocyte-colony-stimulating factor mobilizes bone marrow stem cells in patients with subacute ischemic stroke: the Stem cell Trial of recovery Enhancement After Stroke (STEMS) pilot randomized, controlled trial (ISRCTN 16784092). Stroke. 2006;37:2979–83.

    Article  CAS  PubMed  Google Scholar 

  62. Shyu WC, Lin SZ, Lee CC, Liu DD, Li H. Granulocyte colony-stimulating factor for acute ischemic stroke: a randomized controlled trial. CMAJ. 2006;174:927–33.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Schabitz WR, Laage R, Vogt G, Koch W, Kollmar R, Schwab S, et al. AXIS: a trial of intravenous granulocyte colony-stimulating factor in acute ischemic stroke. Stroke. 2010;41:2545–51.

    Article  PubMed  Google Scholar 

  64. Ringelstein EB, Thijs V, Norrving B, Chamorro A, Aichner F, Grond M, et al. Granulocyte colony-stimulating factor in patients with acute ischemic stroke: results of the AX200 for Ischemic Stroke trial. Stroke. 2013;44(10):2681–7.

    Article  CAS  PubMed  Google Scholar 

  65. An C, Shi Y, Li P, Hu X, Gan Y, Stetler RA, et al. Molecular dialogs between the ischemic brain and the peripheral immune system: dualistic roles in injury and repair. Prog Neurobiol. 2014;115:6–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Lapchak PA, Zhang JH, Noble-Haeusslein LJ. RIGOR guidelines: escalating STAIR and STEPS for effective translational research. Transl Stroke Res. 2013;4(3):279–85.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Li L, McBride DW, Doycheva D, Dixon BJ, Krafft PR, Zhang JH, et al. G-CSF attenuates neuroinflammation and stabilizes the blood–brain barrier via the PI3K/Akt/GSK-3β signaling pathway following neonatal hypoxia-ischemia in rats. Exp Neurol. 2015;S0014–4886(15):00005–9.

    Google Scholar 

  68. Sobrino T, Millán M, Castellanos M, Blanco M, Brea D, Dorado L, et al. Association of growth factors with arterial recanalization and clinical outcome in patients with ischemic stroke treated with tPA. J Thromb Haemost. 2010;8(7):1567–74.

    Article  CAS  PubMed  Google Scholar 

  69. Liu X, Ye R, Yan T, Yu SP, Wei L, Xu G, et al. Cell based therapies for ischemic stroke: from basic science to bedside. Prog Neurobiol. 2014;115:92–115.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Zhang XM, Du F, Yang D, Wang R, Yu C, Huang XN, et al. Granulocyte colony-stimulating factor increases the therapeutic efficacy of bone marrow mononuclear cell transplantation in cerebral ischemia in mice. BMC Neurosci. 2011;12:61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Balseanu AT, Buga AM, Catalin B, Wagner DC, Boltze J, Zagrean AM, et al. Multimodal approaches for regenerative stroke therapies: combination of granulocyte colony-stimulating factor with bone marrow mesenchymal stem cells is not superior to G-CSF alone. Front Aging Neurosci. 2014;6:130.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Popa-Wagner A, Stöcker K, Balseanu AT, Rogalewski A, Diederich K, Minnerup J, et al. Effects of granulocyte-colony stimulating factor after stroke in aged rats. Stroke. 2010;41(5):1027–31.

    Article  CAS  PubMed  Google Scholar 

  73. Acosta SA, Tajiri N, Shinozuka K, Ishikawa H, Sanberg PR, Sanchez-Ramos J, et al. Combination therapy of human umbilical cord blood cells and granulocyte colony stimulating factor reduces histopathological and motor impairments in an experimental model of chronic traumatic brain injury. PLoS One. 2014;12(9(3):e90953.

    Article  Google Scholar 

  74. Iskander A, Knight RA, Zhang ZG, Ewing JR, Shankar A, Varma NR, et al. Intravenous administration of human umbilical cord blood-derived AC133+ endothelial progenitor cells in rat stroke model reduces infarct volume: magnetic resonance imaging and histological findings. Stem Cells Transl Med. 2013;2:703–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Shahaduzzaman M, Golden JE, Green S, Gronda AE, Adrien E, Ahmed A, et al. A single administration of human umbilical cord blood T cells produces long-lasting effects in the aging hippocampus. Age (Dordr). 2013;35:2071–87.

    Article  CAS  Google Scholar 

  76. Zhao LR, Piao CS, Murikinati SR, Gonzalez-Toledo ME. The role of stem cell factor and granulocyte-colony stimulating factor in treatment of stroke. Recent Pat CNS Drug Discov. 2013;8(1):2–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Sanchez-Ramos J, Song S, Sava V, Catlow B, Lin X, Mori T, et al. Granulocyte colony stimulating factor decreases brain amyloid burden and reverses cognitive impairment in Alzheimer’s mice. Neuroscience. 2009;163:55–72.

    Article  CAS  PubMed  Google Scholar 

  78. Toth ZE, Leker RR, Shahar T, Pastorino S, Szalayova I, Asemenew B, et al. The combination of granulocyte colony-stimulating factor and stem cell factor significantly increases the number of bone marrow-derived endothelial cells in brains of mice following cerebral ischemia. Blood. 2008;111:5544–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. England TJ, Abaei M, Auer DP, Lowe J, Jones DR, Sare G, et al. Granulocyte-colony stimulating factor for mobilizing bone marrow stem cells in subacute stroke: the stem cell trial of recovery enhancement after stroke 2 randomized controlled trial. Stroke. 2012;43:405–11.

    Article  CAS  PubMed  Google Scholar 

  80. Stachura DL, Svoboda O, Campbell CA, Espín-Palazón R, Lau RP, Zon LI, et al. The zebrafish granulocyte colony stimulating factors (Gcsfs): two paralogous cytokines and their roles in hematopoietic development and maintenance. Blood. 2013;122(24):3918–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Tsuji T, Nishimura-Morita Y, Watanabe Y, Hirano D, Nakanishi S, Mori KJ, et al. A murine stromal cell line promotes the expansion of CD34high+-primitive progenitor cells isolated from human umbilical cord blood in combination with human cytokines. Growth Factors. 1999;16(3):225–40.

    Article  CAS  PubMed  Google Scholar 

  82. Borlongan CV. Bone marrow stem cell mobilization in stroke: a ‘bonehead’ may be good after all! Leukemia. 2011;25:1674–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Yang DY, Chen YJ, Wang MF, Pan HC, Chen SY, Cheng FC. Granulocyte colony-stimulating factor enhances cellular proliferation and motor function recovery on rats subjected to traumatic brain injury. Neurol Res. 2010;32(10):1041–9.

    Article  PubMed  Google Scholar 

  84. Yang M, Wei X, Li J, Heine LA, Rosenwasser R, Iacovitti L. Changes in host blood factors and brain glia accompanying the functional recovery after systemic administration of bone marrow stem cells in ischemic stroke rats. Cell Transplant. 2010;19:1073–84.

    Article  PubMed  Google Scholar 

  85. Fan CG, Zhang QJ, Tang FW, Han ZB, Wang GS, Han ZC. Human umbilical cord blood cells express neurotrophic factors. Neurosci Lett. 2005;380:322–5.

    Article  CAS  PubMed  Google Scholar 

  86. Hayakawa K, Miyamoto N, Seo JH, Pham LD, Kim KW, Lo EH, et al. High-mobility group box 1 from reactive astrocytes enhances the accumulation of endothelial progenitor cells in damaged white matter. J Neurochem. 2013;125(2):273–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Willing AE, Vendrame M, Mallery J, Cassady CJ, Davis CD, Sanchez-Ramos J, et al. Mobilized peripheral blood cells administered intravenously produce functional recovery in stroke. Cell Transplant. 2003;12:449–54.

    Article  PubMed  Google Scholar 

  88. Sullivan R, Duncan K, Dailey T, Kaneko Y, Tajiri N, Borlongan CV. A possible new focus for stroke treatment–migrating stem cells. Expert Opin Biol Ther. 2015;15(7):949–58.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Dailey T, Metcalf C, Mosley YI, Sullivan R, Shinozuka K, Tajiri N, et al. An update on translating stem cell therapy for stroke from bench to bedside. J Clin Med. 2013;2(4):220–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Sanberg PR, Eve DJ, Cruz LE, Borlongan CV. Neurological disorders and the potential role for stem cells as a therapy. Br Med Bull. 2012;101:163–81.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by the National Institutes of Health National Institute of Neurological Disorders and Stroke 1R01NS071956-01A1, 1R21NS089851-0, James and Esther King Biomedical Research Foundation 1KG01-33966, and Loma Linda University School of Pharmacy. The authors thank Mia Borlongan for help with drawing of the figure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ike dela Peña.

Ethics declarations

Ethical Approval

This article does not contain studies with human participants or animals performed by any of the authors.

Funding

This study was supported, in part, by the National Institutes of Health National Institute of Neurological Disorders and Stroke 1R01NS071956-01A1, 1R21NS089851-01, James and Esther King Biomedical Research Foundation 1KG01-33966, and Loma Linda University School of Pharmacy.

Conflict of Interest

C. V. Borlongan has patents and patent applications on stem cell therapy. I. dela Peña declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dela Peña, I., Borlongan, C.V. Translating G-CSF as an Adjunct Therapy to Stem Cell Transplantation for Stroke. Transl. Stroke Res. 6, 421–429 (2015). https://doi.org/10.1007/s12975-015-0430-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-015-0430-x

Keywords

Navigation