Skip to main content
Log in

Post-Stroke Walking Behaviors Consistent with Altered Ground Reaction Force Direction Control Advise New Approaches to Research and Therapy

  • Commentary
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Recovery of walking after stroke requires an understanding of how motor control deficits lead to gait impairment. Traditional therapy focuses on removing specific observable gait behaviors that deviate from unimpaired walking; however, those behaviors may be effective compensations for underlying problematic motor control deficits rather than direct effects of the stroke. Neurological deficits caused by stroke are not well understood, and thus, efficient interventions for gait rehabilitation likely remain unrealized. Our laboratory has previously characterized a post-stroke control deficit that yields a specific difference in direction of the ground reaction force (F, limb endpoint force) exerted with the hemiplegic limb of study participants pushing on both stationary and moving pedals while seated. That task was not dependent on F to retain upright posture, and thus, the task did not constrain F direction. Rather, the F direction was the product of neural preference. It is not known if this specific muscle coordination deficit causes the observed walking deviations, but if present during walking, the deficit would prevent upright posture unless counteracted by compensatory behaviors. Compensations are presented that mechanically counteract the F misdirection to allow upright posture. Those compensations are similar to behaviors observed in stroke patients. Based on that alignment between predictions of this theory and clinical observations, we theorize that post-stroke gait results from the attempt to compensate for the underlying F misdirection deficit. Limb endpoint force direction has been shown to be trainable in the paretic upper limb, making it a feasible goal in the lower limb. If this F misdirection theory is valid, these ideas have tremendous promise for advancing the field of post-stroke gait rehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lord SE, McPherson K, McNaughton HK, Rochester L, Weatherall M. Community ambulation after stroke: how important and obtainable is it and what measures appear predictive? Arch Phys Med Rehabil. 2004;85:234–9.

    Article  PubMed  Google Scholar 

  2. Bohannon RW, Andrews AW, Smith MB. Rehabilitation goals of patients with hemiplegia. Int J Rehabil Res. 1988;11:181–3.

    Article  Google Scholar 

  3. Bohannon RW, Horton MG, Wikholm JB. Importance of four variables of walking to patients with stroke. Int J Rehabil Res. 1991;14:246–50.

    Article  CAS  PubMed  Google Scholar 

  4. Desrosiers J, Malouin F, Bourbonnais D, Richards CL, Rochette A, Bravo G. Arm and leg impairments and disabilities after stroke rehabilitation: relation to handicap. Clin Rehabil. 2003;17:666–73.

    Article  PubMed  Google Scholar 

  5. Perry J, Garrett M, Gronley JK, Mulroy SJ. Classification of walking handicap in the stroke population. Stroke. 1995;26:982–9.

    Article  CAS  PubMed  Google Scholar 

  6. Loeb GE. Neural control of locomotion: how do all the data fit together? Bioscience. 1989;39:800–4.

    Article  Google Scholar 

  7. Danielsson A, Willen C, Sunnerhagen KS. Physical activity, ambulation, and motor impairment late after stroke. Stroke Res Treat. 2012;2012:818513.

    PubMed Central  PubMed  Google Scholar 

  8. Behrman AL, Bowden MG, Nair PM. Neuroplasticity after spinal cord injury and training: an emerging paradigm shift in rehabilitation and walking recovery. Phys Ther. 2006;86:1406–25.

    Article  PubMed  Google Scholar 

  9. Hollands KL, Pelton TA, Tyson SF, Hollands MA, van Vliet PM. Interventions for coordination of walking following stroke: systematic review. Gait Posture. 2011;35:349–59.

    Article  PubMed  Google Scholar 

  10. Hsu AL, Tang PF, Jan MH. Analysis of impairments influencing gait velocity and asymmetry of hemiplegic patients after mild to moderate stroke. Arch Phys Med Rehabil. 2003;84:1185–93.

    Article  PubMed  Google Scholar 

  11. Dickstein R. Rehabilitation of gait speed after stroke: a critical review of intervention approaches. Neurorehabil Neural Repair. 2008;22:649–60.

    Article  PubMed  Google Scholar 

  12. Dobkin BH, Duncan PW. Should body weight-supported treadmill training and robotic-assistive steppers for locomotor training trot back to the starting gate? Neurorehabil Neural Repair. 2012;26:308–17.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Dobkin BH. Strategies for stroke rehabilitation. Lancet Neurol. 2004;3:528–36.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Moseley AM, Stark A, Cameron ID, Pollock A. Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev 2003;CD002840.

  15. Pollock A, Baer G, Pomeroy V, Langhorne P. Physiotherapy treatment approaches for the recovery of postural control and lower limb function following stroke. Cochrane Database Syst Rev. 2003;2.

  16. Teasell RW, Bhogal SK, Foley NC, Speechley MR. Gait retraining post stroke. Top Stroke Rehabil. 2003;10:34–65.

    Article  PubMed  Google Scholar 

  17. Hornby TG, Campbell DD, Kahn JH, Demott T, Moore JL, Roth HR. Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study. Stroke. 2008;39:1786–92.

    Article  PubMed  Google Scholar 

  18. Mehrholz J, Werner C, Kugler J, Pohl M. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev 2007;4.

  19. Farley CT, Ferris DP. Biomechanics of walking and running: center of mass movements to muscle action. Exerc Sport Sci Rev. 1998;26:253–85.

    Article  CAS  PubMed  Google Scholar 

  20. Craik RL, Oatis CA. Gait analysis: theory and application. St Louis: Mosby; 1995.

    Google Scholar 

  21. Full RJ, Koditschek DE. Templates and anchors: neuromechanical hypotheses of legged locomotion on land. J Exp Biol. 1999;202(Pt 23):3325–32.

    CAS  PubMed  Google Scholar 

  22. Rogers LM, Brown DA, Gruben KG. Foot force direction control during leg pushes against fixed and moving pedals in persons post-stroke. Gait Posture. 2004;19:58–68.

    Article  CAS  PubMed  Google Scholar 

  23. Gruben KG, Rogers LM, Schmidt MW, Tan L. Direction of foot force for pushes against a fixed pedal: variation with pedal position. Mot Control. 2003;7:362–77.

    Google Scholar 

  24. Gruben KG, Boehm WL. Ankle torque control that shifts the center of pressure from heel to toe contributes non-zero sagittal plane angular momentum during human walking. J Biomech 2014.

  25. Kim CM, Eng JJ. Magnitude and pattern of 3D kinematic and kinetic gait profiles in persons with stroke: relationship to walking speed. Gait Posture. 2004;20:140–6.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Kim CM, Eng JJ. Symmetry in vertical ground reaction force is accompanied by symmetry in temporal but not distance variables of gait in persons with stroke. Gait Posture. 2003;18:23–8.

    Article  PubMed  Google Scholar 

  27. Chen CY, Hong PW, Chen CL, Chou SW, Wu CY, Cheng PT, et al. Ground reaction force patterns in stroke patients with various degrees of motor recovery determined by plantar dynamic analysis. Chang Gung Med J. 2007;30:62–72.

    CAS  PubMed  Google Scholar 

  28. De Quervain IA, Simon SR, Leurgans S, Pease WS, McAllister D. Gait pattern in the early recovery period after stroke. J Bone Joint Surg Am. 1996;78:1506–14.

    PubMed  Google Scholar 

  29. Hidler JM, Carroll M, Federovich EH. Strength and coordination in the paretic leg of individuals following acute stroke. IEEE Trans Neural Syst Rehabil Eng. 2007;15:526–34.

    Article  PubMed  Google Scholar 

  30. Morris SL, Dodd KJ, Morris ME. Outcomes of progressive resistance strength training following stroke: a systematic review. Clin Rehabil. 2004;18:27–39.

    Article  PubMed  Google Scholar 

  31. Mudge S, Barber PA, Stott NS. Circuit-based rehabilitation improves gait endurance but not usual walking activity in chronic stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2009;90:1989–96.

    Article  PubMed  Google Scholar 

  32. Sullivan KJ, Brown DA, Klassen T, Mulroy S, Ge T, Azen SP, et al. Effects of task-specific locomotor and strength training in adults who were ambulatory after stroke: results of the STEPS Randomized Clinical Trial. Phys Ther. 2007;87:1580–602.

    Article  PubMed  Google Scholar 

  33. van de Port IG, Wood-Dauphinee S, Lindeman E, Kwakkel G. Effects of exercise training programs on walking competency after stroke: a systematic review. Am J Phys Med Rehabil. 2007;86:935–51.

    Article  PubMed  Google Scholar 

  34. van de Port IG, Wevers LE, Lindeman E, Kwakkel G. Effects of circuit training as alternative to usual physiotherapy after stroke: randomised controlled trial. BMJ. 2012;344:e2672.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Franz JR, Maletis M, Kram R. Real time feedback encourages old adults to increase their propulsion during walking. Clin Biomech. 2014; 29.1:68–74.

  36. Oh K, Baek J, Park S. Gait strategy changes with acceleration to accommodate the biomechanical constraint on push-off propulsion. J Biomech. 2012;45:2920–6.

    Article  PubMed  Google Scholar 

  37. Awad LN, Reisman DS, Kesar TM, Binder-Macleod SA. Targeting paretic propulsion to improve poststroke walking function: a preliminary study. Arch Phys Med Rehabil. 2014;95:840–8.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Awad LN, Binder-Macleod SA, Pohlig RT, Reisman DS. Paretic propulsion and trailing limb angle are key determinants of long-distance walking function after stroke. Neurorehabil Neural Repair. 2015;29:499–508.

    Article  PubMed  Google Scholar 

  39. Bowden MG, Balasubramanian CK, Neptune RR, Kautz SA. Anterior-posterior ground reaction forces as a measure of paretic leg contribution in hemiparetic walking. Stroke. 2006;37:872–6.

    Article  PubMed  Google Scholar 

  40. Bullimore SR, Burn JF. Consequences of forward translation of the point of force application for the mechanics of running. J Theor Biol. 2006;238:211–9.

    Article  PubMed  Google Scholar 

  41. Gruben KG, Boehm WL. Force direction pattern stabilizes sagittal plane mechanics of human walking. Hum Mov Sci. 2012;31:649–59.

    Article  PubMed  Google Scholar 

  42. Gruben KG, Boehm WL. Ankle torque control that shifts the center of pressure from heel to toe contributes non-zero sagittal plane angular momentum during human walking. J Biomech. 2014;47:1389–94.

    Article  PubMed  Google Scholar 

  43. Sharma S, McMorland AJ, Stinear JW. Stance limb ground reaction forces in high functioning stroke and healthy subjects during gait initiation. Clin Biomech (Bristol, Avon) 2015.

  44. Mulroy S, Gronley J, Weiss W, Newsam C, Perry J. Use of cluster analysis for gait pattern classification of patients in the early and late recovery phases following stroke. Gait Posture. 2003;18:114–25.

    Article  PubMed  Google Scholar 

  45. Shiavi R, Bugle HJ, Limbird T. Electromyographic gait assessment, part 2: preliminary assessment of hemiparetic synergy patterns. J Rehabil Res Dev. 1987;24:24–30.

    CAS  PubMed  Google Scholar 

  46. Bowden MG, Behrman AL, Woodbury M, Gregory CM, Velozo CA, Kautz SA. Advancing measurement of locomotor rehabilitation outcomes to optimize interventions and differentiate between recovery versus compensation. J Neurol Phys Ther. 2012;36:38–44.

    Article  PubMed  Google Scholar 

  47. Goodman MJ, Menown JL, West Jr JM, Barr KM, Vander Linden DW, McMulkin ML. Secondary gait compensations in individuals without neuromuscular involvement following a unilateral imposed equinus constraint. Gait Posture. 2004;20:238–44.

    Article  PubMed  Google Scholar 

  48. Titianova EB, Tarkka IM. Asymmetry in walking performance and postural sway in patients with chronic unilateral cerebral infarction. J Rehabil Res Dev. 1995;32:236–44.

    CAS  PubMed  Google Scholar 

  49. Bogataj U, Gros N, Malezic M, Kelih B, Kljajic M, Acimovic R. Restoration of gait during two to three weeks of therapy with multichannel electrical stimulation. Phys Ther. 1989;69:319–27.

    CAS  PubMed  Google Scholar 

  50. Carlsoo S, Dahllof A, Holm J. Kinetic analysis of gait in patients with hemiparesis and in patients with intermittant claudication. Scand J Rehabil Med. 1974;6:166–79.

    CAS  PubMed  Google Scholar 

  51. Chen G, Patten C, Kothari DH, Zajac FE. Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds. Gait Posture. 2005;22:51–6.

    Article  PubMed  Google Scholar 

  52. Dettmann MA, Linder MT, Sepic SB. Relationships among walking performance, postural stability, and functional assessments of the hemiplegic patient. Am J Phys Med Rehab. 1987;66:77–90.

    CAS  Google Scholar 

  53. Olney SJ, Richards C. Hemiparetic gait following stroke. Part I: characteristics. Gait Posture. 1996;4:136–48.

  54. Peat M, Dubo HI, Winter DA, Quanbury AO, Steinke T, Grahame R. Electromyographic temporal analysis of gait: hemiplegic locomotion. Arch Phys Med Rehabil. 1976;57:421–5.

    CAS  PubMed  Google Scholar 

  55. Wall JC, Ashburn A. Assessment of gait disability in hemiplegics. Hemiplegic gait Scand J Rehabil Med. 1979;11:95–103.

    CAS  PubMed  Google Scholar 

  56. Wall JC, Turnbull GI. Gait asymmetries in residual hemiplegia. Arch Phys Med Rehabil. 1986;67:550–3.

    CAS  PubMed  Google Scholar 

  57. Allen JL, Kautz SA, Neptune RR. Step length asymmetry is representative of compensatory mechanisms used in post-stroke hemiparetic walking. Gait Posture. 2011;33:538–43.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Hof AL. The force resulting from the action of mono- and biarticular muscles in a limb. J Biomech. 2001;34:1085–9.

    Article  CAS  PubMed  Google Scholar 

  59. Bobath B. Adult hemiplegia: evaluation and treatment. Elsevier Health Sciences, 1990.

  60. Neckel ND, Blonien N, Nichols D, Hidler J. Abnormal joint torque patterns exhibited by chronic stroke subjects while walking with a prescribed physiological gait pattern. J Neuroeng Rehab. 2008;5:19.

    Article  Google Scholar 

  61. Barela JA, Whitall J, Black P, Clark JE. An examination of constraints affecting the intralimb coordination of hemiparetic gait. Hum Mov Sci. 2000;19:251–73.

    Article  Google Scholar 

  62. Silver-Thorn B, Herrmann A, Current T, McGuire J. Effect of ankle orientation on heel loading and knee stability for post-stroke individuals wearing ankle-foot orthoses. Prosthet Orthot Int. 2011;35:150–62.

    Article  PubMed  Google Scholar 

  63. O’Sullivan SB. Stroke. In: O’Sullivan SB, Schmitz TJ, editors. Physical rehabilitation: assessment and treatment. Philadelphia: F.A. Davis Company; 1994. p. 78–553.

    Google Scholar 

  64. Lehmann JF, Condon SM, Price R, DeLateur BJ. Gait abnormalities in hemiplegia - their correction by ankle-foot orthoses. Arch Phys Med Rehabil. 1987;68:763–71.

    CAS  PubMed  Google Scholar 

  65. Turani N, Kemiksizoglu A, Karatas M, Ozker R. Assessment of hemiplegic gait using the Wisconsin Gait Scale. Scand J Caring Sci. 2004;18:103–8.

    Article  PubMed  Google Scholar 

  66. Bogardh E, Richards CL. Gait analysis and relearning of gait control in hemiplegic patients. Physiother Can. 1981;33:223–30.

    Google Scholar 

  67. Siegel KL, Kepple TM, Stanhope SJ. Using induced accelerations to understand knee stability during gait of individuals with muscle weakness. Gait Posture. 2005;23:435–40.

    Article  PubMed  Google Scholar 

  68. Higginson JS, Zajac FE, Neptune RR, Kautz SA, Burgar CG, Delp SL. Effect of equinus foot placement and intrinsic muscle response on knee extension during stance. Gait Posture. 2006;23:32–6.

    Article  CAS  PubMed  Google Scholar 

  69. Matjacic Z, Olensek A, Bajd T. Biomechanical characterization and clinical implications of artificially induced toe-walking: differences between pure soleus, pure gastrocnemius and combination of soleus and gastrocnemius contractures. J Biomech. 2006;39:255–66.

    Article  PubMed  Google Scholar 

  70. Kepple TM, Siegel KL, Stanhope SJ. Relative contributions of the lower extremity joint moments to forward progression and support during gait. Gait Posture. 1997;6:1–8.

    Article  Google Scholar 

  71. Winter DA. Overall principle of lower limb support during stance phase of gait. J Biomech. 1980;13:923–7.

    Article  CAS  PubMed  Google Scholar 

  72. Knutsson E, Richards C. Different types of disturbed motor control in gait of hemiparetic patients. Brain. 1979;102:405–30.

    Article  CAS  PubMed  Google Scholar 

  73. Kerrigan DC, Frates EP, Rogan S, Riley PO. Spastic paretic stiff-legged gait—biomechanics of the unaffected limb. Am J Phys Med Rehab. 1999;78:354–60.

    Article  CAS  Google Scholar 

  74. Lamontagne A, Richards CL, Malouin F. Coactivation during gait as an adaptive behavior after stroke. J Electromyogr Kinesiol. 2000;10:407–15.

    Article  CAS  PubMed  Google Scholar 

  75. Riley PO, Kerrigan D. Kinetics of stiff-legged gait: induced acceleration analysis. IEEE Trans Rehab Eng. 1999;7:420–6.

    Article  CAS  Google Scholar 

  76. Kerrigan DC, Gronley J, Perry J. Stiff-legged gait in spastic paresis. a study of quadriceps and hamstrings muscle activity. Am J Phys Med Rehabil. 1991;70:294–300.

    Article  CAS  PubMed  Google Scholar 

  77. Kinsella S, Moran K. Gait pattern categorization of stroke participants with equinus deformity of the foot. Gait Posture. 2008;27:144–51.

    Article  PubMed  Google Scholar 

  78. Gruben KG, Boehm WL. Mechanical interaction of center of pressure and force direction in the upright human. J Biomech. 2012;45:1661–5.

    Article  PubMed  Google Scholar 

  79. Perry J. Gait analysis: normal and pathological function. Thorofare: Slack Incorporated; 1992.

    Google Scholar 

  80. Takebe K, Basmajian JV. Gait analysis in stroke patients to assess treatments of foot-drop. Arch Phys Med Rehabil. 1976;57:305–10.

    CAS  PubMed  Google Scholar 

  81. Blaya JA, Herr H. Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Trans Neural Syst Rehab Eng. 2004;12:24–31.

    Article  Google Scholar 

  82. Kerrigan DC, Frates EP, Rogan S, Riley PO. Hip hiking and circumduction: quantitative definitions. Am J Phys Med Rehabil. 2000;79:247–52.

    Article  CAS  PubMed  Google Scholar 

  83. Deserres SJ, Milner TE. Wrist muscle activation patterns and stiffness associated with stable and unstable mechanical loads. Exp Brain Res. 1991;86:451–8.

    Article  CAS  Google Scholar 

  84. Bourbonnais D, Vanden Noven S, Pelletier R. Incoordination in patients with hemiparesis. Can J Public Health. 1992;83 Suppl 2:S58–63.

    PubMed  Google Scholar 

  85. Milner TE. Adaptation to destabilizing dynamics by means of muscle cocontraction. Exp Brain Res. 2002;143:406–16.

    Article  PubMed  Google Scholar 

  86. Patton JL, Kovic M, Mussa-Ivaldi FA. Custom-designed haptic training for restoring reaching ability to individuals with poststroke hemiparesis. J Rehabil Res Dev. 2006;43:643–56.

    Article  PubMed  Google Scholar 

  87. Patton JL, Mussa-Ivaldi FA. Robot-assisted adaptive training: custom force fields for teaching movement patterns. IEEE Trans Biomed Eng. 2004;51:636–46.

    Article  PubMed  Google Scholar 

  88. Patton JL, Stoykov ME, Kovic M, Mussa-Ivaldi FA. Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors. Exp Brain Res. 2006;168:368–83.

    Article  PubMed  Google Scholar 

  89. Bourbonnais D, Bilodeau S, Lepage Y, Beaudoin N, Gravel D, Forget R. Effect of force-feedback treatments in patients with chronic motor deficits after a stroke. Am J Phys Med Rehab. 2002;81:890–7.

    Article  Google Scholar 

  90. Pang MY, Yang JF. The initiation of the swing phase in human infant stepping: importance of hip position and leg loading. J Physiol. 2000;528(2):389–404.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Hassid E, Rose D, Dobkin B. Improved gait symmetry in hemiparetic stroke patients during body weight-supported treadmill stepping. J Neurol Rehab. 1997;11:21–6.

    Google Scholar 

  92. Visintin M, Barbeau H. The effects of body weight support on the locomotor pattern of spastic paretic patients. Can J Neurol Sci. 1989;16:315–25.

    CAS  PubMed  Google Scholar 

  93. Hesse S, Konrad M, Uhlenbrock D. Treadmill walking with partial body weight support versus floor walking in hemiparetic subjects. Arch Phys Med Rehabil. 1999;80:421–7.

    Article  CAS  PubMed  Google Scholar 

  94. Burgess JK, Weibel GC, Brown DA. Overground walking speed changes when subjected to body weight support conditions for nonimpaired and post stroke individuals. J Neuroeng Rehab. 2010;7:6.

    Article  Google Scholar 

  95. Duncan PW, Sullivan KJ, Behrman AL, Azen SP, Wu SS, Nadeau SE, et al. Body-weight-supported treadmill rehabilitation after stroke. N Engl J Med. 2011;364:2026–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Suputtitada A, Yooktanan P, Rarerng-Ying T. Effect of partial body weight support treadmill training in chronic stroke patients. J Med Assoc Thai. 2004;87 Suppl 2:S107–11.

    PubMed  Google Scholar 

  97. Helbostad JL. Treadmill training and/or body weight support may not improve walking ability following stroke. Aust J Physiother. 2003;49:278.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendy L. Boehm.

Ethics declarations

The authors declare that they have no conflict of interest. The authors gratefully acknowledge the financial support of the University of Wisconsin Graduate School and Foundation (V. H. Henry Fund). This sponsor had no role in the study or publication decisions. This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boehm, W.L., Gruben, K.G. Post-Stroke Walking Behaviors Consistent with Altered Ground Reaction Force Direction Control Advise New Approaches to Research and Therapy. Transl. Stroke Res. 7, 3–11 (2016). https://doi.org/10.1007/s12975-015-0435-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-015-0435-5

Keywords

Navigation