Skip to main content
Log in

Characteristics of Cerebrovascular Injury in the Hyperacute Phase After Induced Severe Subarachnoid Hemorrhage

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Although there have been several investigations regarding acute brain injury after subarachnoid hemorrhage (SAH), the pathological conditions of severe SAH are unclear. In this study, we pursued the characteristics of cerebrovascular injury in the hyperacute phase after experimentally induced severe SAH. Twenty-three male Sprague-Dawley rats were subjected to sham or SAH operation using the endovascular perforation method and were evaluated for brain edema, blood-brain barrier (BBB) permeability, and arterial endothelial cell injury at 5 min after SAH (experiment 1). Next, animals were examined for functional and morphological changes of cerebral artery for 30 min after an acetazolamide injection administered 5 min after SAH (experiment 2). In experiment 1, while cerebral blood flow (CBF) was reduced, brain edema was not observed in SAH-operated rats. BBB permeability detected by immunoglobulin G extravasation was observed in the optic tract and was accompanied by the upregulation of phosphorylated extracellular signal-regulated kinase (ERK)-positive astrocytes. In addition, the number of phosphorylated ERK-positive endothelial cell in the distal middle cerebral artery (MCA) was significantly increased by SAH. In experiment 2, CBF in non-lethal SAH rats was reduced, and no response to acetazolamide was detected. Conversely, CBF in lethal SAH increased due to acetazolamide, although the value of CBF was low. Furthermore, there was significant narrowing of the MCA in SAH-operated rats. The findings suggest that the optic tract and the cerebral artery are the most vulnerable areas regarding cerebrovascular injury in a hyperacute phase after severe SAH and that they are associated with fatal outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Frontera JA, Ahmed W, Zach V, Jovine M, Tanenbaum L, Sehba F, et al. Acute ischaemia after subarachnoid haemorrhage, relationship with early brain injury and impact on outcome: a prospective quantitative MRI study. J Neurol Neurosurg Psychiatry. 2015;86:71–8.

    Article  PubMed  Google Scholar 

  2. Bederson JB, Germano IM, Guarino L. Cortical blood flow and cerebral perfusion pressure in a new noncraniotomy model of subarachnoid hemorrhage in the rat. Stroke. 1995;26:1086–91. discussion 1091–2.

    Article  CAS  PubMed  Google Scholar 

  3. Povlsen GK, Johansson SE, Larsen CC, Samraj AK, Edvinsson L. Early events triggering delayed vasoconstrictor receptor upregulation and cerebral ischemia after subarachnoid hemorrhage. BMC Neurosci. 2013;14:34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Bederson JB, Levy AL, Ding WH, Kahn R, DiPerna CA, Jenkins 3rd AL, et al. Acute vasoconstriction after subarachnoid hemorrhage. Neurosurgery. 1998;42:352–60. discussion 360–2.

    Article  CAS  PubMed  Google Scholar 

  5. Bederson JB, Connolly Jr ES, Batjer HH, Dacey RG, Dion JE, Diringer MN, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke. 2009;40:994–1025.

    Article  PubMed  Google Scholar 

  6. Huang J, van Gelder JM. The probability of sudden death from rupture of intracranial aneurysms: a meta-analysis. Neurosurgery. 2002;51:1101–5. discussion 1105–7.

    Article  PubMed  Google Scholar 

  7. Chen S, Li Q, Wu H, Krafft PR, Wang Z, Zhang JH. The harmful effects of subarachnoid hemorrhage on extracerebral organs. Biomed Res Int. 2014;2014:858496.

    PubMed Central  PubMed  Google Scholar 

  8. Zhao W, Ujiie H, Tamano Y, Akimoto K, Hori T, Takakura K. Sudden death in a rat subarachnoid hemorrhage model. Neurol Med Chir (Tokyo). 1999;39:735–41. discussion 741–3.

    Article  CAS  Google Scholar 

  9. Sehba FA, Mostafa G, Friedrich Jr V, Bederson JB. Acute microvascular platelet aggregation after subarachnoid hemorrhage. J Neurosurg. 2005;102:1094–100.

    Article  PubMed  Google Scholar 

  10. Sehba FA, Mostafa G, Knopman J, Friedrich Jr V, Bederson JB. Acute alterations in microvascular basal lamina after subarachnoid hemorrhage. J Neurosurg. 2004;101:633–40.

    Article  PubMed  Google Scholar 

  11. Sehba FA, Schwartz AY, Chereshnev I, Bederson JB. Acute decrease in cerebral nitric oxide levels after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2000;20:604–11.

    Article  CAS  PubMed  Google Scholar 

  12. Mehta SL, Manhas N, Raghubir R. Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev. 2007;54:34–66.

    Article  CAS  PubMed  Google Scholar 

  13. Maddahi A, Edvinsson L. Cerebral ischemia induces microvascular pro-inflammatory cytokine expression via the MEK/ERK pathway. J Neuroinflammation. 2010;7:14.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Suzuki H, Hasegawa Y, Kanamaru K, Zhang JH. Mechanisms of osteopontin-induced stabilization of blood-brain barrier disruption after subarachnoid hemorrhage in rats. Stroke. 2010;41:1783–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Suzuki H, Ayer R, Sugawara T, Chen W, Sozen T, Hasegawa Y, et al. Protective effects of recombinant osteopontin on early brain injury after subarachnoid hemorrhage in rats. Crit Care Med. 2010;38:612–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Hasegawa Y, Suzuki H, Altay O, Zhang JH. Preservation of tropomyosin-related kinase B (TrkB) signaling by sodium orthovanadate attenuates early brain injury after subarachnoid hemorrhage in rats. Stroke. 2011;42:477–83.

    Article  CAS  PubMed  Google Scholar 

  17. Uekawa K, Hasegawa Y, Ma M, Nakagawa T, Katayama T, Sueta D, et al. Rosuvastatin ameliorates early brain injury after subarachnoid hemorrhage via suppression of superoxide formation and nuclear factor-kappa B activation in rats. J Stroke Cerebrovasc Dis. 2014;23:1429–39.

    Article  PubMed  Google Scholar 

  18. Dong YF, Kataoka K, Tokutomi Y, Nako H, Nakamura T, Toyama K, et al. Beneficial effects of combination of valsartan and amlodipine on salt-induced brain injury in hypertensive rats. J Pharmacol Exp Ther. 2011;339:358–66.

    Article  CAS  PubMed  Google Scholar 

  19. Sugawara T, Ayer R, Jadhav V, Zhang JH. A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model. J Neurosci Methods. 2008;167:327–34.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Hasegawa Y, Suzuki H, Nakagawa T, Uekawa K, Koibuchi N, Kawano T, Kim-Mitsuyama S. Assessment of the correlations between brain weight and brain edema in experimental subarachnoid hemorrhage. Acta Neurochir Suppl. in press.

  21. Hasegawa Y, Nakagawa T, Uekawa K, Ma M, Lin B, Kusaka H, Katayama T, Sueta D, Toyama K, Koibuchi N, Kim-Mitsuyama S. Therapy with the combination of amlodipine and irbesartan has persistent preventative effects on stroke onset associated with BDNF preservation on cerebral vessels in hypertensive rats. Transl Stroke Res. in press.

  22. Wu CH, Chi JC, Jerng JS, Lin SJ, Jan KM, Wang DL, et al. Transendothelial macromolecular transport in the aorta of spontaneously hypertensive rats. Hypertension. 1990;16:154–61.

    Article  PubMed  Google Scholar 

  23. Egashira Y, Hua Y, Keep RF, Xi G. Acute white matter injury after experimental subarachnoid hemorrhage: potential role of lipocalin 2. Stroke. 2014;45:2141–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Sehba FA, Friedrich Jr V, Makonnen G, Bederson JB. Acute cerebral vascular injury after subarachnoid hemorrhage and its prevention by administration of a nitric oxide donor. J Neurosurg. 2007;106:321–9.

    Article  CAS  PubMed  Google Scholar 

  25. Little JR, Kerr FW, Sundt Jr TM. Microcirculatory obstruction in focal cerebral ischemia. Relationship to neuronal alterations. Mayo Clin Proc. 1975;50:264–70.

    CAS  PubMed  Google Scholar 

  26. Paljärvi L, Rehncrona S, Söderfeldt B, Olsson Y, Kalimo H. Brain lactic acidosis and ischemic cell damage: quantitative ultrastructural changes in capillaries of rat cerebral cortex. Acta Neuropathol. 1983;60:232–40.

    Article  PubMed  Google Scholar 

  27. Ansar S, Edvinsson L. Subtype activation and interaction of protein kinase C and mitogen-activated protein kinase controlling receptor expression in cerebral arteries and microvessels after subarachnoid hemorrhage. Stroke. 2008;39:185–90.

    Article  CAS  PubMed  Google Scholar 

  28. Ansar S, Eftekhari S, Waldsee R, Nilsson E, Nilsson O, Säveland H, et al. MAPK signaling pathway regulates cerebrovascular receptor expression in human cerebral arteries. BMC Neurosci. 2013;14:12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Beg SA, Hansen-Schwartz JA, Vikman PJ, Xu CB, Edvinsson LI. ERK1/2 inhibition attenuates cerebral blood flow reduction and abolishes ET(B) and 5-HT(1B) receptor upregulation after subarachnoid hemorrhage in rat. J Cereb Blood Flow Metab. 2006;26:846–56.

    Article  CAS  PubMed  Google Scholar 

  30. Henriksson M, Xu CB, Edvinsson L. Importance of ERK1/2 in upregulation of endothelin type B receptors in cerebral arteries. Br J Pharmacol. 2004;142:1155–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Maddahi A, Povlsen GK, Edvinsson L. Regulation of enhanced cerebrovascular expression of proinflammatory mediators in experimental subarachnoid hemorrhage via the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase pathway. J Neuroinflammation. 2012;9:274.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Reinprecht A, Czech T, Asenbaum S, Podreka I, Schmidbauer M. Low cerebrovascular reserve capacity in long-term follow-up after subarachnoid hemorrhage. Surg Neurol. 2005;64:116–20. discussion 121.

    Article  PubMed  Google Scholar 

  33. Offenhauser N, Windmüller O, Strong AJ, Fuhr S, Dreier JP. The gamut of blood flow responses coupled to spreading depolarization in rat and human brain: from hyperemia to prolonged ischemia. Acta Neurochir Suppl. 2011;110(Pt 1):119–24.

    CAS  PubMed  Google Scholar 

  34. Shigeno T, Fritschka E, Brock M, Schramm J, Shigeno S, Cervoś-Navarro J. Cerebral edema following experimental subarachnoid hemorrhage. Stroke. 1982;13:368–79.

    Article  CAS  PubMed  Google Scholar 

  35. Gibbs JM, Wise RJ, Leenders KL, Jones T. Evaluation of cerebral perfusion reserve in patients with carotid-artery occlusion. Lancet. 1984;1:310–4.

    Article  CAS  PubMed  Google Scholar 

  36. Powers WJ, Raichle ME. Positron emission tomography and its application to the study of cerebrovascular disease in man. Stroke. 1985;16:361–76.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang JH. Vascular neural network in subarachnoid hemorrhage. Transl Stroke Res. 2014;5:423–8.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Larsen CC, Hansen-Schwartz J, Nielsen JD, Astrup J. Blood coagulation and fibrinolysis after experimental subarachnoid hemorrhage. Acta Neurochir (Wien). 2010;152:1577–81. discussion 1581.

    Article  Google Scholar 

  39. Schwartz AY, Masago A, Sehba FA, Bederson JB. Experimental models of subarachnoid hemorrhage in the rat: a refinement of the endovascular filament model. J Neurosci Methods. 2000;96:161–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by JSPS KAKENHI Grant Number 24592135. We thank Yuriko Shimamura, Miho Kataoka, Michie Uchikawa, and Keiko Morozumi for their support.

Compliance with Ethics Requirements

All institutional and national guidelines for the care and use of laboratory animals were followed.

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Hasegawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasegawa, Y., Suzuki, H., Uekawa, K. et al. Characteristics of Cerebrovascular Injury in the Hyperacute Phase After Induced Severe Subarachnoid Hemorrhage. Transl. Stroke Res. 6, 458–466 (2015). https://doi.org/10.1007/s12975-015-0423-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-015-0423-9

Keywords

Navigation