Skip to main content

Advertisement

Log in

Molecular Imaging of Cerebrovascular Lesions

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Inflammation is a key component in the pathogenesis of cerebrovascular lesions. Two agents have emerged as promising possibilities for imaging cerebrovascular lesions. These agents are ferumoxytol and myeloperoxidase (MPO)-specific paramagnetic magnetic resonance (MR) contrast agent. Ferumoxytol is an iron oxide nanoparticle coated by a carbohydrate shell that is used in MRI studies as an inflammatory marker as it is cleared by macrophages. Ferumoxytol-enhanced MRI allows noninvasive assessment of the inflammatory status of cerebral aneurysms and arteriovenous malformations and, possibly, may differentiate “unstable” lesions that require early intervention from “stable” lesions that can be safely observed. Several pilot studies have also suggested that MPO-specific paramagnetic MR contrast agent, di-5-hydroxytryptamide of gadopentetate dimeglumine, may allow imaging of inflammation in the wall of saccular aneurysms in animal models. However, studies in human subjects have yet to be performed. In this paper, we review current data regarding ferumoxytol-enhanced MRI and MPO-specific paramagnetic MR contrast agent and discuss current and future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chalouhi N, Dumont AS, Randazzo C, Tjoumakaris S, Gonzalez LF, Rosenwasser R, et al. Management of incidentally discovered intracranial vascular abnormalities. Neurosurg Focus. 2011;31:E1.

    Article  PubMed  Google Scholar 

  2. Al-Shahi R, Warlow C. A systematic review of the frequency and prognosis of arteriovenous malformations of the brain in adults. Brain. 2001;124:1900–26.

    Article  CAS  PubMed  Google Scholar 

  3. van Gijn J, Kerr RS, Rinkel GJ. Subarachnoid haemorrhage. Lancet. 2007;369:306–18.

    Article  PubMed  Google Scholar 

  4. Nieuwkamp DJ, Setz LE, Algra A, Linn FH, de Rooij NK, Rinkel GJ. Changes in case fatality of aneurysmal subarachnoid haemorrhage over time, according to age, sex, and region: a meta-analysis. Lancet Neurol. 2009;8:635–42.

    Article  PubMed  Google Scholar 

  5. Wiebers DO, Whisnant JP, Huston 3rd J, Meissner I, Brown Jr RD, Piepgras DG, et al. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet. 2003;362:103–10.

    Article  PubMed  Google Scholar 

  6. Chalouhi N, Jabbour P, Singhal S, Drueding R, Starke RM, Dalyai RT, et al. Stent-assisted coiling of intracranial aneurysms: predictors of complications, recanalization, and outcome in 508 cases. Stroke. 2013;44:1348–53.

    Article  PubMed  Google Scholar 

  7. Chalouhi N, Tjoumakaris S, Starke RM, Gonzalez LF, Randazzo C, Hasan D, et al. Comparison of flow diversion and coiling in large unruptured intracranial saccular aneurysms. Stroke. 2013;44(8):2150–4.

    Article  PubMed  Google Scholar 

  8. Lawton MT, Du R, Tran MN, Achrol AS, McCulloch CE, Johnston SC, et al. Effect of presenting hemorrhage on outcome after microsurgical resection of brain arteriovenous malformations. Neurosurgery. 2005;56:485–93. discussion 485–493.

    Article  PubMed  Google Scholar 

  9. Stapf C, Mohr JP. Unruptured brain arteriovenous malformations should be treated conservatively: yes. Stroke. 2007;38:3308–9.

    Article  PubMed  Google Scholar 

  10. Laakso A, Dashti R, Seppanen J, Juvela S, Vaart K, Niemela M, et al. Long-term excess mortality in 623 patients with brain arteriovenous malformations. Neurosurgery. 2008;63:244–53. discussion 253–245.

    Article  PubMed  Google Scholar 

  11. Hasan D, Chalouhi N, Jabbour P, Dumont AS, Kung DK, Magnotta VA, et al. Early change in ferumoxytol-enhanced magnetic resonance imaging signal suggests unstable human cerebral aneurysm: a pilot study. Stroke. 2012;43:3258–65.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Chalouhi N, Ali MS, Starke RM, Jabbour PM, Tjoumakaris SI, Gonzalez LF, et al. Cigarette smoke and inflammation: role in cerebral aneurysm formation and rupture. Mediators Inflamm. 2012;2012:271582.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Starke RM, Chalouhi N, Ali MS, Jabbour PM, Tjoumakaris SI, Gonzalez LF, et al. The role of oxidative stress in cerebral aneurysm formation and rupture. Curr Neurovasc Res. 2013;10(3):247–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. DeLeo 3rd MJ, Gounis MJ, Hong B, Ford JC, Wakhloo AK, Bogdanov Jr AA. Carotid artery brain aneurysm model: in vivo molecular enzyme-specific MR imaging of active inflammation in a pilot study. Radiology. 2009;252:696–703.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Klebanoff SJ. Myeloperoxidase. Proc Assoc Am Physicians. 1999;111:383–9.

    CAS  PubMed  Google Scholar 

  16. Heinecke JW. Pathways for oxidation of low density lipoprotein by myeloperoxidase: tyrosyl radical, reactive aldehydes, hypochlorous acid and molecular chlorine. Biofactors. 1997;6:145–55.

    Article  CAS  PubMed  Google Scholar 

  17. Fu X, Kassim SY, Parks WC, Heinecke JW. Hypochlorous acid oxygenates the cysteine switch domain of pro-matrilysin (MMP-7). A mechanism for matrix metalloproteinase activation and atherosclerotic plaque rupture by myeloperoxidase. J Biol Chem. 2001;276:41279–87.

    Article  CAS  PubMed  Google Scholar 

  18. Hasan D, Hashimoto T, Kung D, Macdonald RL, Winn HR, Heistad D. Upregulation of cyclooxygenase-2 (COX-2) and microsomal prostaglandin E2 synthase-1 (mPGES-1) in wall of ruptured human cerebral aneurysms: preliminary results. Stroke. 2012;43:1964–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Chalouhi N, Starke RM, Jabbour P, Hasan D. Aspirin for prevention of subarachnoid hemorrhage: the stage is set for a randomized controlled trial. Neurosurgery. 2013. doi:10.1227/NEU.0000000000000164.

    Google Scholar 

  20. Chalouhi N, Points L, Pierce GL, Ballas Z, Jabbour P, Hasan D. Localized increase of chemokines in the lumen of human cerebral aneurysms. Stroke. 2013;44:2594–7.

    Article  CAS  PubMed  Google Scholar 

  21. Sho E, Sho M, Singh TM, Nanjo H, Komatsu M, Xu C, et al. Arterial enlargement in response to high flow requires early expression of matrix metalloproteinases to degrade extracellular matrix. Exp Mol Pathol. 2002;73:142–53.

    Article  CAS  PubMed  Google Scholar 

  22. Jamous MA, Nagahiro S, Kitazato KT, Tamura T, Aziz HA, Shono M, et al. Endothelial injury and inflammatory response induced by hemodynamic changes preceding intracranial aneurysm formation: experimental study in rats. J Neurosurg. 2007;107:405–11.

    Article  PubMed  Google Scholar 

  23. Jamous MA, Nagahiro S, Kitazato KT, Satoh K, Satomi J. Vascular corrosion casts mirroring early morphological changes that lead to the formation of saccular cerebral aneurysm: an experimental study in rats. J Neurosurg. 2005;102:532–5.

    Article  PubMed  Google Scholar 

  24. Tada Y, Yagi K, Kitazato KT, Tamura T, Kinouchi T, Shimada K, et al. Reduction of endothelial tight junction proteins is related to cerebral aneurysm formation in rats. J Hypertens. 2010;28:1883–91.

    Article  CAS  PubMed  Google Scholar 

  25. Chien S. Effects of disturbed flow on endothelial cells. Ann Biomed Eng. 2008;36:554–62.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Aoki T, Kataoka H, Shimamura M, Nakagami H, Wakayama K, Moriwaki T, et al. NF-kappaB is a key mediator of cerebral aneurysm formation. Circulation. 2007;116:2830–40.

    Article  CAS  PubMed  Google Scholar 

  27. Aoki T, Kataoka H, Ishibashi R, Nozaki K, Egashira K, Hashimoto N. Impact of monocyte chemoattractant protein-1 deficiency on cerebral aneurysm formation. Stroke. 2009;40:942–51.

    Article  CAS  PubMed  Google Scholar 

  28. Krischek B, Kasuya H, Tajima A, Akagawa H, Sasaki T, Yoneyama T, et al. Network-based gene expression analysis of intracranial aneurysm tissue reveals role of antigen presenting cells. Neuroscience. 2008;154:1398–407.

    Article  CAS  PubMed  Google Scholar 

  29. Kosierkiewicz TA, Factor SM, Dickson DW. Immunocytochemical studies of atherosclerotic lesions of cerebral berry aneurysms. J Neuropathol Exp Neurol. 1994;53:399–406.

    Article  CAS  PubMed  Google Scholar 

  30. Shi C, Awad IA, Jafari N, Lin S, Du P, Hage ZA, et al. Genomics of human intracranial aneurysm wall. Stroke. 2009;40:1252–61.

    Article  PubMed  Google Scholar 

  31. Chitale R, Gonzalez LF, Randazzo C, Dumont AS, Tjoumakaris S, Rosenwasser R, et al. Single center experience with pipeline stent: feasibility, technique, and complications. Neurosurgery. 2012;71:679–91. discussion 691.

    Article  PubMed  Google Scholar 

  32. Kanematsu Y, Kanematsu M, Kurihara C, Tada Y, Tsou TL, van Rooijen N, et al. Critical roles of macrophages in the formation of intracranial aneurysm. Stroke. 2011;42:173–8.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Aoki T, Kataoka H, Moriwaki T, Nozaki K, Hashimoto N. Role of TIMP-1 and TIMP-2 in the progression of cerebral aneurysms. Stroke. 2007;38:2337–45.

    Article  CAS  PubMed  Google Scholar 

  34. Ishibashi R, Aoki T, Nishimura M, Hashimoto N, Miyamoto S. Contribution of mast cells to cerebral aneurysm formation. Curr Neurovasc Res. 2010;7:113–24.

    Article  CAS  PubMed  Google Scholar 

  35. Kolega J, Gao L, Mandelbaum M, Mocco J, Siddiqui AH, Natarajan SK, et al. Cellular and molecular responses of the basilar terminus to hemodynamics during intracranial aneurysm initiation in a rabbit model. J Vasc Res. 2011;48:429–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Aoki T, Kataoka H, Morimoto M, Nozaki K, Hashimoto N. Macrophage-derived matrix metalloproteinase-2 and -9 promote the progression of cerebral aneurysms in rats. Stroke. 2007;38:162–9.

    Article  CAS  PubMed  Google Scholar 

  37. Tronc F, Mallat Z, Lehoux S, Wassef M, Esposito B, Tedgui A. Role of matrix metalloproteinases in blood flow-induced arterial enlargement: interaction with no. Arterioscler Thromb Vasc Biol. 2000;20:E120–6.

    Article  CAS  PubMed  Google Scholar 

  38. Jin D, Sheng J, Yang X, Gao B. Matrix metalloproteinases and tissue inhibitors of metalloproteinases expression in human cerebral ruptured and unruptured aneurysm. Surg Neurol. 2007;68 Suppl 2:S11–6. discussion S16.

    Article  PubMed  Google Scholar 

  39. Hasan D, Chalouhi N, Jabbour P, Hashimoto T. Macrophage imbalance (M1 vs. M2) and upregulation of mast cells in wall of ruptured human cerebral aneurysms: preliminary results. J Neuroinflammation. 2012;9:222.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Chen Y, Fan Y, Poon KY, Achrol AS, Lawton MT, Zhu Y, et al. MMP-9 expression is associated with leukocytic but not endothelial markers in brain arteriovenous malformations. Front Biosci. 2006;11:3121–8.

    Article  CAS  PubMed  Google Scholar 

  41. Chen Y, Pawlikowska L, Yao JS, Shen F, Zhai W, Achrol AS, et al. Interleukin-6 involvement in brain arteriovenous malformations. Ann Neurol. 2006;59:72–80.

    Article  CAS  PubMed  Google Scholar 

  42. Chen Y, Zhu W, Bollen AW, Lawton MT, Barbaro NM, Dowd CF, et al. Evidence of inflammatory cell involvement in brain arteriovenous malformations. Neurosurgery. 2008;62:1340–9. discussion 1349–1350.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Chen G, Zheng M, Shu H, Zhan S, Wang H, Zhou D, et al. Macrophage migration inhibitory factor reduces apoptosis in cerebral arteriovenous malformations. Neurosci Lett. 2012;508:84–8.

    Article  CAS  PubMed  Google Scholar 

  44. Aziz MM, Takagi Y, Hashimoto N, Miyamoto S. Activation of nuclear factor κB in cerebral arteriovenous malformations. Neurosurgery. 2010;67:1669–79. discussion 1679–1680.

    Article  PubMed  Google Scholar 

  45. Pawlikowska L, Tran MN, Achrol AS, McCulloch CE, Ha C, Lind DL, et al. Polymorphisms in genes involved in inflammatory and angiogenic pathways and the risk of hemorrhagic presentation of brain arteriovenous malformations. Stroke. 2004;35:2294–300.

    Article  CAS  PubMed  Google Scholar 

  46. Achrol AS, Pawlikowska L, McCulloch CE, Poon KY, Ha C, Zaroff JG, et al. Tumor necrosis factor-alpha-238G>A promoter polymorphism is associated with increased risk of new hemorrhage in the natural course of patients with brain arteriovenous malformations. Stroke. 2006;37:231–4.

    Article  CAS  PubMed  Google Scholar 

  47. Kim H, Hysi PG, Pawlikowska L, Poon A, Burchard EG, Zaroff JG, et al. Common variants in interleukin-1-beta gene are associated with intracranial hemorrhage and susceptibility to brain arteriovenous malformation. Cerebrovasc Dis. 2009;27:176–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Kataoka K, Taneda M, Asai T, Kinoshita A, Ito M, Kuroda R. Structural fragility and inflammatory response of ruptured cerebral aneurysms. A comparative study between ruptured and unruptured cerebral aneurysms. Stroke. 1999;30:1396–401.

    Article  CAS  PubMed  Google Scholar 

  49. Frosen J, Piippo A, Paetau A, Kangasniemi M, Niemela M, Hernesniemi J, et al. Remodeling of saccular cerebral artery aneurysm wall is associated with rupture: histological analysis of 24 unruptured and 42 ruptured cases. Stroke. 2004;35:2287–93.

    Article  PubMed  Google Scholar 

  50. Shabani F, McNeil J, Tippett L. The oxidative inactivation of tissue inhibitor of metalloproteinase-1 (TIMP-1) by hypochlorous acid (HOCI) is suppressed by anti-rheumatic drugs. Free Radic Res. 1998;28:115–23.

    Article  CAS  PubMed  Google Scholar 

  51. Lu M, Cohen MH, Rieves D, Pazdur R. FDA report: ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease. Am J Hematol. 2010;85:315–9.

    CAS  PubMed  Google Scholar 

  52. Spinowitz BS, Kausz AT, Baptista J, Noble SD, Sothinathan R, Bernardo MV, et al. Ferumoxytol for treating iron deficiency anemia in CKD. J Am Soc Nephrol. 2008;19:1599–605.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Stabi KL, Bendz LM. Ferumoxytol use as an intravenous contrast agent for magnetic resonance angiography. Ann Pharmacother. 2011;45:1571–5.

    Article  CAS  PubMed  Google Scholar 

  54. Bailie GR. Comparison of rates of reported adverse events associated with i.v. iron products in the United States. Am J Health Syst Pharm. 2012;69:310–20.

    Article  CAS  PubMed  Google Scholar 

  55. Kilic T, Sohrabifar M, Kurtkaya O, Yildirim O, Elmaci I, Gunel M, et al. Expression of structural proteins and angiogenic factors in normal arterial and unruptured and ruptured aneurysm walls. Neurosurgery. 2005;57:997–1007. discussion 1997–1007.

    Article  PubMed  Google Scholar 

  56. Prince MR, Zhang HL, Chabra SG, Jacobs P, Wang Y. A pilot investigation of new superparamagnetic iron oxide (ferumoxytol) as a contrast agent for cardiovascular MRI. J Xray Sci Technol. 2003;11:231–40.

    CAS  PubMed  Google Scholar 

  57. Ersoy H, Jacobs P, Kent CK, Prince MR. Blood pool MR angiography of aortic stent-graft endoleak. AJR Am J Roentgenol. 2004;182:1181–6.

    Article  PubMed  Google Scholar 

  58. Li W, Salanitri J, Tutton S, Dunkle EE, Schneider JR, Caprini JA, et al. Lower extremity deep venous thrombosis: evaluation with ferumoxytol-enhanced MR imaging and dual-contrast mechanism—preliminary experience. Radiology. 2007;242:873–81.

    Article  PubMed  Google Scholar 

  59. Neuwelt EA, Varallyay CG, Manninger S, Solymosi D, Haluska M, Hunt MA, et al. The potential of ferumoxytol nanoparticle magnetic resonance imaging, perfusion, and angiography in central nervous system malignancy: a pilot study. Neurosurgery. 2007;60:601–11. discussion 611–602.

    Article  PubMed  Google Scholar 

  60. Gahramanov S, Raslan AM, Muldoon LL, Hamilton BE, Rooney WD, Varallyay CG, et al. Potential for differentiation of pseudoprogression from true tumor progression with dynamic susceptibility-weighted contrast-enhanced magnetic resonance imaging using ferumoxytol vs. gadoteridol: a pilot study. Int J Radiat Oncol Biol Phys. 2011;79:514–23.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Dosa E, Guillaume DJ, Haluska M, Lacy CA, Hamilton BE, Njus JM, et al. Magnetic resonance imaging of intracranial tumors: intra-patient comparison of gadoteridol and ferumoxytol. Neuro Oncol. 2011;13:251–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Dosa E, Tuladhar S, Muldoon LL, Hamilton BE, Rooney WD, Neuwelt EA. MRI using ferumoxytol improves the visualization of central nervous system vascular malformations. Stroke. 2011;42:1581–8.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Harisinghani M, Ross RW, Guimaraes AR, Weissleder R. Utility of a new bolus-injectable nanoparticle for clinical cancer staging. Neoplasia. 2007;9:1160–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Herborn CU, Vogt FM, Lauenstein TC, Dirsch O, Corot C, Robert P, et al. Magnetic resonance imaging of experimental atherosclerotic plaque: comparison of two ultrasmall superparamagnetic particles of iron oxide. J Magn Reson Imaging. 2006;24:388–93.

    Article  PubMed  Google Scholar 

  65. Hyafil F, Laissy JP, Mazighi M, Tchetche D, Louedec L, Adle-Biassette H, et al. Ferumoxtran-10-enhanced MRI of the hypercholesterolemic rabbit aorta: relationship between signal loss and macrophage infiltration. Arterioscler Thromb Vasc Biol. 2006;26:176–81.

    Article  CAS  PubMed  Google Scholar 

  66. Ruehm SG, Corot C, Vogt P, Kolb S, Debatin JF. Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation. 2001;103:415–22.

    Article  CAS  PubMed  Google Scholar 

  67. Trivedi RA, JM UK-I, Graves MJ, Cross JJ, Horsley J, Goddard MJ, et al. In vivo detection of macrophages in human carotid atheroma: temporal dependence of ultrasmall superparamagnetic particles of iron oxide-enhanced MRI. Stroke. 2004;35:1631–5.

    Article  PubMed  Google Scholar 

  68. Trivedi RA, JM UK-I, Graves MJ, Kirkpatrick PJ, Gillard JH. Noninvasive imaging of carotid plaque inflammation. Neurology. 2004;63:187–8.

    Article  CAS  PubMed  Google Scholar 

  69. Weinstein JS, Varallyay CG, Dosa E, Gahramanov S, Hamilton B, Rooney WD, et al. Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J Cereb Blood Flow Metab. 2010;30:15–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Yancy AD, Olzinski AR, Hu TC, Lenhard SC, Aravindhan K, Gruver SM, et al. Differential uptake of ferumoxtran-10 and ferumoxytol, ultrasmall superparamagnetic iron oxide contrast agents in rabbit: critical determinants of atherosclerotic plaque labeling. J Magn Reson Imaging. 2005;21:432–42.

    Article  PubMed  Google Scholar 

  71. Hasan DM, Mahaney KB, Magnotta VA, Kung DK, Lawton MT, Hashimoto T, et al. Macrophage imaging within human cerebral aneurysms wall using ferumoxytol-enhanced MRI: a pilot study. Arterioscler Thromb Vasc Biol. 2012;32:1032–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Hasan DM, Chalouhi N, Jabbour P, Magnotta VA, Kung DK, Young WL. Imaging aspirin effect on macrophages in the wall of human cerebral aneurysms using ferumoxytol-enhanced MRI: preliminary results. J Neuroradiol. 2013;40(3):187–91.

    Article  PubMed  Google Scholar 

  73. Hasan DM, Mahaney KB, Brown Jr RD, Meissner I, Piepgras DG, Huston J, et al. Aspirin as a promising agent for decreasing incidence of cerebral aneurysm rupture. Stroke. 2011;42:3156–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Hasan DM, Chalouhi N, Jabbour P, Dumont AS, Kung DK, Magnotta VA, et al. Evidence that acetylsalicylic acid attenuates inflammation in the walls of human cerebral aneurysms: preliminary results. J Am Heart Assoc. 2013;2:e000019.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Chalouhi N, Witte S, Penn DL, Soni P, Starke RM, Jabbour P, et al. Diagnostic yield of cerebral angiography in patients with computed tomography-negative, lumbar puncture-positive subarachnoid hemorrhage. Neurosurgery. 2013;73(2):282–8.

    Article  PubMed  Google Scholar 

  76. Matouk CC, Mandell DM, Gunel M, Bulsara KR, Malhotra A, Hebert R, et al. Vessel wall magnetic resonance imaging identifies the site of rupture in patients with multiple intracranial aneurysms: proof of principle. Neurosurgery. 2013;72:492–6. discussion 496.

    Article  PubMed  Google Scholar 

  77. Dumont AS, Dumont RJ, Chow MM, Lin CL, Calisaneller T, Ley KF, et al. Cerebral vasospasm after subarachnoid hemorrhage: putative role of inflammation. Neurosurgery. 2003;53:123–33. discussion 133–125.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by a grant (# R03NS07922) from the NIH to D.H. No funding was provided by AMAG Pharmaceuticals, Inc., the manufacturer of ferumoxytol.

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Hasan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chalouhi, N., Jabbour, P., Magnotta, V. et al. Molecular Imaging of Cerebrovascular Lesions. Transl. Stroke Res. 5, 260–268 (2014). https://doi.org/10.1007/s12975-013-0291-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-013-0291-0

Keywords

Navigation