Skip to main content

Molecular Imaging of Cerebrovascular Reactivity

  • Protocol
  • First Online:
Cerebrovascular Reactivity

Part of the book series: Neuromethods ((NM,volume 175))

  • 488 Accesses

Abstract

Positron emission tomography (PET) with [15O]H2O is the clinical reference standard for assessment of cerebrovascular reactivity (CVR). This molecular imaging technique measures the brain’s uptake of an exogenous, radioactive tracer and fits kinetic models to these measurements to quantify perfusion at rest and after a vasoactive challenge. Single-photon emission computed tomography (SPECT) with [99mTc]-labelled perfusion agents provides relative (non-quantitative) regional cerebral blood flow (rCBF). This chapter describes the theory, acquisition, and modelling aspects of nuclear medicine methods to measure CVR, with focus on [15O]H2O PET. The reliability of the CVR imaging biomarkers and their ability to identify hemodynamic impairment in neurovascular disorders are described. We also discuss the advantages and limitations of the approach and highlight technical advances including hybrid imaging with simultaneous PET/MRI to improve the accuracy and reduce the invasiveness of the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kety SS, Schmidt CF (1948) The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J Clin Invest 27:476–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Xu F, Ge Y, Lu H (2009) Noninvasive quantification of whole-brain cerebral metabolic rate of oxygen (CMRO2) by MRI. Magn Reson Med 62:141–148

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ingvar DH, Lassen NA (1961) Quantitative determination of cerebral blood flow in man. Lancet 2:806–807

    Article  Google Scholar 

  4. Lassen NA, Ingvar DH (1972) Radioisotopic assessment of regional cerebral blood flow. Prog Nucl Med 1:376–409

    CAS  PubMed  Google Scholar 

  5. Kapucu OL, Nobili F, Varrone A et al (2009) EANM procedure guideline for brain perfusion SPECT using 99mTc-labelled radiopharmaceuticals, version 2. Eur J Nucl Med Mol Imaging 36:2093–2102

    Article  CAS  PubMed  Google Scholar 

  6. Catafau AM (2001) Brain SPECT in clinical practice. Part I: Perfusion. J Nucl Med 42:259–271

    CAS  PubMed  Google Scholar 

  7. Sugawara Y, Kikuchi T, Ueda T et al (2002) Usefulness of brain SPECT to evaluate brain tolerance and hemodynamic changes during temporary balloon occlusion test and after permanent carotid occlusion. J Nucl Med 43:1616–1623

    PubMed  Google Scholar 

  8. Matsuda H (2007) Role of neuroimaging in Alzheimer’s disease, with emphasis on brain perfusion SPECT. J Nucl Med 48:1289–1300

    Article  PubMed  Google Scholar 

  9. Spieth ME, Devadas GC, Gauger BS (2004) Procedure guideline for brain death scintigraphy. J Nucl Med 45:922. author reply 922

    PubMed  Google Scholar 

  10. Kazemi NJ, Worrell GA, Stead SM et al (2010) Ictal SPECT statistical parametric mapping in temporal lobe epilepsy surgery. Neurology 74:70–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hoffman EJ, Guerrero TM, Germano G et al (1989) PET system calibrations and corrections for quantitative and spatially accurate images. IEEE Trans Nucl Sci 36:1108–1112

    Article  Google Scholar 

  12. Boellaard R (2009) Standards for PET image acquisition and quantitative data analysis. J Nucl Med 50(Suppl 1):11S–20S

    Article  CAS  PubMed  Google Scholar 

  13. Bremmer JP, van Berckel BN, Persoon S et al (2011) Day-to-day test-retest variability of CBF, CMRO2, and OEF measurements using dynamic 15O PET studies. Mol Imaging Biol 13:759–768

    Article  PubMed  Google Scholar 

  14. Landau WM, Freygang WH, Roland LP et al (1955) The local circulation of the living brain; values in the unanesthetized and anesthetized cat. Trans Am Neurol Assoc 80:125–129

    Google Scholar 

  15. Raichle ME, Martin WR, Herscovitch P et al (1983) Brain blood flow measured with intravenous H2(15)O. II. Implementation and validation. J Nucl Med 24:790–798

    CAS  PubMed  Google Scholar 

  16. Larsson HB, Courivaud F, Rostrup E et al (2009) Measurement of brain perfusion, blood volume, and blood-brain barrier permeability, using dynamic contrast-enhanced T(1)-weighted MRI at 3 tesla. Magn Reson Med 62:1270–1281

    Article  PubMed  Google Scholar 

  17. Herscovitch P, Raichle ME (1985) What is the correct value for the brain--blood partition coefficient for water? J Cereb Blood Flow Metab 5:65–69

    Article  CAS  PubMed  Google Scholar 

  18. Huang SC, Mahoney DK, Phelps ME (1987) Quantitation in positron emission tomography: 8. Effects of nonlinear parameter estimation on functional images. J Comput Assist Tomogr 11:314–325

    Article  CAS  PubMed  Google Scholar 

  19. Zhou Y, Huang SC, Bergsneider M (2001) Linear ridge regression with spatial constraint for generation of parametric images in dynamic positron emission tomography studies. IEEE Trans Nucl Sci 48:125–130

    Article  Google Scholar 

  20. Ho D, Feng D (1999) Rapid algorithms for the construction of cerebral blood flow and oxygen utilization images with oxygen-15 and dynamic positron emission tomography. Comput Methods Prog Biomed 58:99–117

    Article  CAS  Google Scholar 

  21. Kanno I, Iida H, Miura S et al (1987) A system for cerebral blood flow measurement using an H215O autoradiographic method and positron emission tomography. J Cereb Blood Flow Metab 7:143–153

    Article  CAS  PubMed  Google Scholar 

  22. Treyer V, Jobin M, Burger C et al (2003) Quantitative cerebral H2(15)O perfusion PET without arterial blood sampling, a method based on washout rate. Eur J Nucl Med Mol Imaging 30:572–580

    Article  CAS  PubMed  Google Scholar 

  23. Boellaard R, Knaapen P, Rijbroek A et al (2005) Evaluation of basis function and linear least squares methods for generating parametric blood flow images using 15O-water and positron emission tomography. Mol Imaging Biol 7:273–285

    Article  PubMed  Google Scholar 

  24. Al-Ibraheem A, Buck A, Krause BJ et al (2009) Clinical applications of FDG PET and PET/CT in head and neck cancer. J Oncol 2009:208725

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shivamurthy VK, Tahari AK, Marcus C et al (2015) Brain FDG PET and the diagnosis of dementia. AJR Am J Roentgenol 204:W76–W85

    Article  PubMed  Google Scholar 

  26. Bruzzi JF, Munden RF, Truong MT et al (2007) PET/CT of esophageal cancer: its role in clinical management. Radiographics 27:1635–1652

    Article  PubMed  Google Scholar 

  27. Subhas N, Patel PV, Pannu HK et al (2005) Imaging of pelvic malignancies with in-line FDG PET-CT: case examples and common pitfalls of FDG PET. Radiographics 25:1031–1043

    Article  PubMed  Google Scholar 

  28. Andersen FL, Ladefoged CN, Beyer T et al (2014) Combined PET/MR imaging in neurology: MR-based attenuation correction implies a strong spatial bias when ignoring bone. NeuroImage 84:206–216

    Article  PubMed  Google Scholar 

  29. Ladefoged CN, Law I, Anazodo U et al (2016) A multi-centre evaluation of eleven clinically feasible brain PET/MRI attenuation correction techniques using a large cohort of patients. NeuroImage 147:346–359

    Article  PubMed  Google Scholar 

  30. Zhang K, Herzog H, Mauler J et al (2014) Comparison of cerebral blood flow acquired by simultaneous [15O]water positron emission tomography and arterial spin labeling magnetic resonance imaging. J Cereb Blood Flow Metab 34:1373–1380

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhang X, Xie Z, Berg E et al (2020) Total-body dynamic reconstruction and parametric imaging on the uEXPLORER. J Nucl Med 61:285–291

    Article  CAS  PubMed  Google Scholar 

  32. Lorthois S, Duru P, Billanou I et al (2014) Kinetic modeling in the context of cerebral blood flow quantification by H2(15)O positron emission tomography: the meaning of the permeability coefficient in Renkin-Crones model revisited at capillary scale. J Theor Biol 353:157–169

    Article  PubMed  Google Scholar 

  33. Herscovitch P, Raichle ME, Kilbourn MR et al (1987) Positron emission tomographic measurement of cerebral blood flow and permeability-surface area product of water using [15O]water and [11C]butanol. J Cereb Blood Flow Metab 7:527–542

    Article  CAS  PubMed  Google Scholar 

  34. Herzog H, Seitz RJ, Tellmann L et al (1996) Quantitation of regional cerebral blood flow with 15O-butanol and positron emission tomography in humans. J Cereb Blood Flow Metab 16:645–649

    Article  CAS  PubMed  Google Scholar 

  35. Wunderlich G, Knorr U, Stephan KM et al (1997) Dynamic scanning of 15O-butanol with positron emission tomography can identify regional cerebral activations. Hum Brain Mapp 5:364–378

    Article  CAS  PubMed  Google Scholar 

  36. Puig O, Vestergaard MB, Lindberg U et al (2019) Phase contrast mapping MRI measurements of global cerebral blood flow across different perfusion states - a direct comparison with (15)O-H2O positron emission tomography using a hybrid PET/MR system. J Cereb Blood Flow Metab 39:2368–2378

    Article  PubMed  Google Scholar 

  37. Ibaraki M, Miura S, Shimosegawa E et al (2008) Quantification of cerebral blood flow and oxygen metabolism with 3-dimensional PET and 15O: validation by comparison with 2-dimensional PET. J Nucl Med 49:50–59

    Article  PubMed  Google Scholar 

  38. Meyer E (1989) Simultaneous correction for tracer arrival delay and dispersion in CBF measurements by the H215O autoradiographic method and dynamic PET. J Nucl Med 30:1069–1078

    CAS  PubMed  Google Scholar 

  39. Kanno I, Miura S, Murakami M (1991) Optimal scan time of oxygen- 15-labeled water cerebral blood flow. J Nucl Med 32:1931–1934

    CAS  PubMed  Google Scholar 

  40. Okazawa H, Yamauchi H, Sugimoto K et al (2001) Effects of acetazolamide on cerebral blood flow, blood volume, and oxygen metabolism: a positron emission tomography study with healthy volunteers. J Cereb Blood Flow Metab 21:1472–1479

    Article  CAS  PubMed  Google Scholar 

  41. Koopman T, Yaqub M, Heijtel DF et al (2019) Semi-quantitative cerebral blood flow parameters derived from non-invasive [(15)O]H2O PET studies. J Cereb Blood Flow Metab 39:163–172

    Article  CAS  PubMed  Google Scholar 

  42. Thomas BP, Liu P, Park DC et al (2014) Cerebrovascular reactivity in the brain white matter: magnitude, temporal characteristics, and age effects. J Cereb Blood Flow Metab 34:242–247

    Article  PubMed  Google Scholar 

  43. Peng SL, Chen X, Li Y et al (2018) Age-related changes in cerebrovascular reactivity and their relationship to cognition: a four-year longitudinal study. NeuroImage 174:257–262

    Article  PubMed  Google Scholar 

  44. Deegan BM, Sorond FA, Lipsitz LA et al (2009) Gender related differences in cerebral autoregulation in older healthy subjects. Annu Int Conf IEEE Eng Med Biol Soc 2009:2859–2862

    PubMed  Google Scholar 

  45. Olah L, Valikovics A, Bereczki D et al (2000) Gender-related differences in acetazolamide-induced cerebral vasodilatory response: a transcranial Doppler study. J Neuroimaging 10:151–156

    Article  CAS  PubMed  Google Scholar 

  46. Coles JP, Fryer TD, Bradley PG et al (2006) Intersubject variability and reproducibility of 15O PET studies. J Cereb Blood Flow Metab 26:48–57

    Article  CAS  PubMed  Google Scholar 

  47. Van Lieshout JJ, Wieling W, Karemaker JM et al (2003) Syncope, cerebral perfusion, and oxygenation. J Appl Physiol (1985) 94:833–848

    Article  Google Scholar 

  48. Kuroda S, Houkin K, Kamiyama H et al (2001) Long-term prognosis of medically treated patients with internal carotid or middle cerebral artery occlusion: can acetazolamide test predict it? Stroke 32:2110–2115

    Article  CAS  PubMed  Google Scholar 

  49. Powers WJ, Clarke WR et al (2011) Extracranial-Intracranial Bypass Surgery for Stroke Prevention in Hemodynamic Cerebral Ischemia The Carotid Occlusion Surgery Study Randomized Trial. JAMA 306:1983–1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kuhn FP, Warnock G, Schweingruber T et al (2015) Quantitative H2[(15)O]-PET in pediatric moyamoya disease: evaluating perfusion before and after cerebral revascularization. J Stroke Cerebrovasc Dis 24:965–971

    Article  PubMed  Google Scholar 

  51. Vagal AS, Leach JL, Fernandez-Ulloa M et al (2009) The acetazolamide challenge: techniques and applications in the evaluation of chronic cerebral ischemia. AJNR Am J Neuroradiol 30:876–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hosoda K, Kawaguchi T, Shibata Y et al (2001) Cerebral vasoreactivity and internal carotid artery flow help to identify patients at risk for hyperperfusion after carotid endarterectomy. Stroke 32:1567–1573

    Article  CAS  PubMed  Google Scholar 

  53. Derdeyn CP, Videen TO, Yundt KD et al (2002) Variability of cerebral blood volume and oxygen extraction: stages of cerebral haemodynamic impairment revisited. Brain 125:595–607

    Article  PubMed  Google Scholar 

  54. Yamauchi H, Fukuyama H, Nagahama Y et al (1996) Evidence of misery perfusion and risk for recurrent stroke in major cerebral arterial occlusive diseases from PET. J Neurol Neurosurg Psychiatry 61:18–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kuwabara Y, Ichiya Y, Sasaki M et al (1995) Time dependency of the acetazolamide effect on cerebral hemodynamics in patients with chronic occlusive cerebral arteries. Early steal phenomenon demonstrated by [15O]H2O positron emission tomography. Stroke 26:1825–1829

    Article  CAS  PubMed  Google Scholar 

  56. Kuwabara Y, Ichiya Y, Sasaki M et al (1998) PET evaluation of cerebral hemodynamics in occlusive cerebrovascular disease pre- and postsurgery. J Nucl Med 39:760–765

    CAS  PubMed  Google Scholar 

  57. Grubb RL, Derdeyn CP, Fritsch SM et al (1998) Importance of hemodynamic factors in the prognosis of symptomatic carotid occlusion. J Am Med Assoc 280:1055–1060

    Article  Google Scholar 

  58. Bruno A, Adams HP, Biller J et al (1988) Cerebral infarction due to moyamoya disease in young adults. Stroke 19:826–833

    Article  CAS  PubMed  Google Scholar 

  59. Kim SK, Seol HJ, Cho BK et al (2004) Moyamoya disease among young patients: its aggressive clinical course and the role of active surgical treatment. Neurosurgery 54:840–844. discussion 844-846

    Article  PubMed  Google Scholar 

  60. Kuwabara Y, Ichiya Y, Sasaki M et al (1997) Response to hypercapnia in moyamoya disease. Cerebrovascular response to hypercapnia in pediatric and adult patients with moyamoya disease. Stroke 28:701–707

    Article  CAS  PubMed  Google Scholar 

  61. Kuroda S, Kashiwazaki D, Hirata K et al (2014) Effects of surgical revascularization on cerebral oxygen metabolism in patients with Moyamoya disease: an 15O-gas positron emission tomographic study. Stroke 45:2717–2721

    Article  CAS  PubMed  Google Scholar 

  62. Glodzik L, Randall C, Rusinek H et al (2013) Cerebrovascular reactivity to carbon dioxide in Alzheimer’s disease. J Alzheimers Dis 35:427–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Stefani A, Sancesario G, Pierantozzi M et al (2009) CSF biomarkers, impairment of cerebral hemodynamics and degree of cognitive decline in Alzheimer’s and mixed dementia. J Neurol Sci 283:109–115

    Article  CAS  PubMed  Google Scholar 

  64. Jagust WJ, Eberling JL, Reed BR et al (1997) Clinical studies of cerebral blood flow in Alzheimer’s disease. Ann N Y Acad Sci 826:254–262

    Article  CAS  PubMed  Google Scholar 

  65. Kimura Y, Kitagawa K, Oku N et al (2010) Blood pressure lowering with valsartan is associated with maintenance of cerebral blood flow and cerebral perfusion reserve in hypertensive patients with cerebral small vessel disease. J Stroke Cerebrovasc Dis 19:85–91

    Article  PubMed  Google Scholar 

  66. Penfield W (1933) The evidence for a cerebral vascular mechanism in epilepsy. Ann Intern Med 7:303–310

    Article  Google Scholar 

  67. Kwan P, Brodie MJ (2000) Early identification of refractory epilepsy. N Engl J Med 342:314–319

    Article  CAS  PubMed  Google Scholar 

  68. Dwivedi R, Ramanujam B, Chandra PS et al (2017) Surgery for drug-resistant epilepsy in children. N Engl J Med 377:1639–1647

    Article  PubMed  Google Scholar 

  69. Knowlton RC, Lawn ND, Mountz JM et al (2004) Ictal SPECT analysis in epilepsy. Neurology 63:10–15

    Article  PubMed  Google Scholar 

  70. Grunwald F, Menzel C, Pavics L et al (1994) Ictal and interictal brain SPECT imaging in epilepsy using technetium-99m-ECD. J Nucl Med 35:1896–1901

    CAS  PubMed  Google Scholar 

  71. Chen T, Guo L (2016) The role of SISCOM in preoperative evaluation for patients with epilepsy surgery: a meta-analysis. Seizure 41:43–50

    Article  CAS  PubMed  Google Scholar 

  72. Newey CR, Wong C, Irene Wang Z et al (2013) Optimizing SPECT SISCOM analysis to localize seizure-onset zone by using varying z scores. Epilepsia 54:793–800

    Article  PubMed  Google Scholar 

  73. Ogasawara K, Ito H, Sasoh M et al (2003) Quantitative measurement of regional cerebrovascular reactivity to acetazolamide using 123I-N-isopropyl-p-iodoamphetamine autoradiography with SPECT: validation study using H2 15O with PET. J Nucl Med 44:520–525

    CAS  PubMed  Google Scholar 

  74. Jae Seung K, Dae Hyuk M, Geun Eun K et al (2000) Acetazolamide stress brain-perfusion SPECT predicts the need for carotid shunting during carotid endarterectomy. J Nucl Med 41:1836–1841

    Google Scholar 

  75. Lee HY, Jin CP, Dong SL et al (2004) Efficacy assessment of cerebral arterial bypass surgery using statistical parametric mapping and probabilistic brain atlas on basal/acetazolamide brain perfusion SPECT. J Nucl Med 45:202–206

    PubMed  Google Scholar 

  76. Cikrit DF, Dalsing MC, Harting PS et al (1997) Cerebral vascular reactivity assessed with acetazolamide single photon emission computer tomography scans before and after carotid endarterectomy. Am J Surg 174:193–197

    Article  CAS  PubMed  Google Scholar 

  77. Morinaga A, Ono K, Ikeda T et al (2010) A comparison of the diagnostic sensitivity of MRI, CBF-SPECT, FDG-PET and cerebrospinal fluid biomarkers for detecting Alzheimer’s disease in a memory clinic. Dement Geriatr Cogn Disord 30:285–292

    Article  PubMed  Google Scholar 

  78. Mehdorn HM, Gerhard L, Muller SP et al (1992) Clinical and cerebral blood flow studies in patients with intracranial hemorrhage and amyloid angiopathy typical of Alzheimer’s disease. Neurosurg Rev 15:111–116

    Article  CAS  PubMed  Google Scholar 

  79. O’Brien JT, Firbank MJ, Davison C et al (2014) 18F-FDG PET and perfusion SPECT in the diagnosis of Alzheimer and Lewy body dementias. J Nucl Med 55:1959–1965

    Article  PubMed  Google Scholar 

  80. Raji CA, Tarzwell R, Pavel D et al (2014) Clinical utility of SPECT neuroimaging in the diagnosis and treatment of traumatic brain injury: a systematic review. PLoS One 9:e91088

    Article  PubMed  PubMed Central  Google Scholar 

  81. Zuckier LS, Kolano J (2008) Radionuclide studies in the determination of brain death: criteria, concepts, and controversies. Semin Nucl Med 38:262–273

    Article  PubMed  Google Scholar 

  82. Werner P, Barthel H, Drzezga A et al (2015) Current status and future role of brain PET/MRI in clinical and research settings. Eur J Nucl Med Mol Imaging 42:512–526

    Article  CAS  PubMed  Google Scholar 

  83. Catana C, Drzezga A, Heiss WD et al (2012) PET/MRI for neurologic applications. J Nucl Med 53:1916–1925

    Article  PubMed  Google Scholar 

  84. Ssali T, Anazodo UC, Thiessen JD et al (2018) A noninvasive method for quantifying cerebral blood flow by hybrid PET/MRI. J Nucl Med 59:1329–1334

    Article  CAS  PubMed  Google Scholar 

  85. Ishii Y, Thamm T, Guo J et al (2020) Simultaneous phase-contrast MRI and PET for noninvasive quantification of cerebral blood flow and reactivity in healthy subjects and patients with cerebrovascular disease. J Magn Reson Imaging 51:183–194

    Article  PubMed  Google Scholar 

  86. Su Y, Arbelaez AM, Benzinger TL et al (2013) Noninvasive estimation of the arterial input function in positron emission tomography imaging of cerebral blood flow. J Cereb Blood Flow Metab 33:115–121

    Article  CAS  PubMed  Google Scholar 

  87. Khalighi MM, Deller TW, Fan AP et al (2018) Image-derived input function estimation on a TOF-enabled PET/MR for cerebral blood flow mapping. J Cereb Blood Flow Metab 38:126–135

    Article  CAS  PubMed  Google Scholar 

  88. Andersen JB, Lindberg U, Olesen OV et al (2019) Hybrid PET/MRI imaging in healthy unsedated newborn infants with quantitative rCBF measurements using (15)O-water PET. J Cereb Blood Flow Metab 39:782–793

    Article  PubMed  Google Scholar 

  89. Fan AP, Guo J, Khalighi MM et al (2017) Long-delay arterial spin labeling provides more accurate cerebral blood flow measurements in moyamoya patients: a simultaneous positron emission tomography/MRI study. Stroke 48:2441–2449

    Article  PubMed  PubMed Central  Google Scholar 

  90. Puig O, Henriksen OM, Vestergaard MB et al (2020) Comparison of simultaneous arterial spin labeling MRI and (15)O-H2O PET measurements of regional cerebral blood flow in rest and altered perfusion states. J Cereb Blood Flow Metab 40:1621–1633

    Article  CAS  PubMed  Google Scholar 

  91. Okazawa H, Higashino Y, Tsujikawa T et al (2018) Noninvasive method for measurement of cerebral blood flow using O-15 water PET/MRI with ASL correlation. Eur J Radiol 105:102–109

    Article  PubMed  Google Scholar 

  92. Chen KT, Gong E, de Carvalho Macruz FB et al (2020) Ultra-Low-Dose (18)F-Florbetaben Amyloid PET Imaging Using Deep Learning with Multi-Contrast MRI Inputs. Radiology 296:E195

    Article  PubMed  Google Scholar 

  93. Kaplan S, Zhu YM (2019) Full-dose PET image estimation from low-dose PET image using deep learning: a pilot study. J Digit Imaging 32:773–778

    Article  PubMed  Google Scholar 

  94. Chen DYT, Ishii Y, Fan AP et al (2020) Predicting PET cerebrovascular reserve with deep learning by using baseline MRI: a pilot investigation of a drug-free brain stress test. Radiology 296:627–637

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Audrey P. Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fan, A.P., Puig Calvo, O. (2022). Molecular Imaging of Cerebrovascular Reactivity. In: Chen, J., Fierstra, J. (eds) Cerebrovascular Reactivity. Neuromethods, vol 175. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1763-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1763-2_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1762-5

  • Online ISBN: 978-1-0716-1763-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics