Skip to main content

Advertisement

Log in

Is There a Place for Cerebral Preconditioning in the Clinic?

  • Review Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Preconditioning (PC) describes a phenomenon whereby a sub-injury-inducing stress can protect against a later injurious stress. Great strides have been made in identifying the mechanisms of PC-induced protection in animal models of brain injury. While these may help elucidate potential therapeutic targets, there are questions over the clinical utility of cerebral PC, primarily because of questions over the need to give the PC stimulus prior to the injury, narrow therapeutic windows, and safety. The object of this review is to address the question of whether there may indeed be a clinical use for cerebral PC and to discuss the deficiencies in our knowledge of PC that may hamper such clinical translation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74(5):1124–1136

    CAS  PubMed  Google Scholar 

  2. Yoshizumi T, Yanaga K, Soejima Y, Maeda T, Uchiyama H, Sugimachi K (1998) Amelioration of liver injury by ischaemic preconditioning. Br J Surg 85(12):1636–1640

    CAS  PubMed  Google Scholar 

  3. Bonventre JV (2002) Kidney ischemic preconditioning. Curr Opin Nephrol Hypertens 11(1):43–48

    PubMed  Google Scholar 

  4. Kitagawa K, Matsumoto M, Tagaya M, Hata R, Ueda H, Niinobe M et al (1990) ‘Ischemic tolerance’ phenomenon found in the brain. Brain Res 528(1):21–24

    CAS  PubMed  Google Scholar 

  5. Kirino T, Nakagomi T, Kanemitsu H, Tamura A (1996) Ischemic tolerance. Adv Neurol 71:505–511

    CAS  PubMed  Google Scholar 

  6. Gidday JM (2006) Cerebral preconditioning and ischaemic tolerance. Nat Rev, Neurosci 7(6):437–448

    CAS  Google Scholar 

  7. Obrenovitch TP (2008) Molecular physiology of preconditioning-induced brain tolerance to ischemia. Physiol Rev 88(1):211–247

    CAS  PubMed  Google Scholar 

  8. Dirnagl U, Becker K, Meisel A (2009) Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol 8(4):398–412

    CAS  PubMed  Google Scholar 

  9. Steiger HJ, Hanggi D (2007) Ischaemic preconditioning of the brain, mechanisms and applications. Acta Neurochir 149(1):1–10

    Google Scholar 

  10. Hausenloy DJ, Yellon DM (2009) Preconditioning and postconditioning: underlying mechanisms and clinical application. Atherosclerosis 204(2):334–341

    CAS  PubMed  Google Scholar 

  11. Zhao H (2009) Ischemic postconditioning as a novel avenue to protect against brain injury after stroke. J Cereb Blood Flow Metab 29(5):873–885

    CAS  PubMed  Google Scholar 

  12. Mack WJ, Kellner CP, Sahlein DH, Ducruet AF, Kim GH, Mocco J et al (2009) Intraoperative magnesium infusion during carotid endarterectomy: a double-blind placebo-controlled trial. J Neurosurg 110(5):961–967

    PubMed  Google Scholar 

  13. Sacco RL, Adams R, Albers G, Alberts MJ, Benavente O, Furie K et al (2006) Guidelines for prevention of stroke in patients with ischemic stroke or transient ischemic attack: a statement for healthcare professionals from the American Heart Association/American Stroke Association Council on Stroke: co-sponsored by the Council on Cardiovascular Radiology and Intervention: the American Academy of Neurology affirms the value of this guideline.[see comment]. Stroke 37(2):577–617

    PubMed  Google Scholar 

  14. Amarenco P, Bogousslavsky J, Callahan A 3rd, Goldstein LB, Hennerici M, Rudolph AE et al (2006) High-dose atorvastatin after stroke or transient ischemic attack [see comment]. N Engl J Med 355(6):549–559

    CAS  PubMed  Google Scholar 

  15. Weih M, Kallenberg K, Bergk A, Dirnagl U, Harms L, Wernecke KD et al (1999) Attenuated stroke severity after prodromal TIA: a role for ischemic tolerance in the brain? [see comment]. Stroke 30(9):1851–1854

    CAS  PubMed  Google Scholar 

  16. Moncayo J, de Freitas GR, Bogousslavsky J, Altieri M, van Melle G (2000) Do transient ischemic attacks have a neuroprotective effect? [see comment]. Neurology 54(11):2089–2094

    CAS  PubMed  Google Scholar 

  17. Wegener S, Gottschalk B, Jovanovic V, Knab R, Fiebach JB, Schellinger PD et al (2004) Transient ischemic attacks before ischemic stroke: preconditioning the human brain? A multicenter magnetic resonance imaging study. Stroke 35(3):616–621

    PubMed  Google Scholar 

  18. Jiang X, Zhu D, Okagaki P, Lipsky R, Wu X, Banaudha K et al (2003) N-methyl-D-aspartate and TrkB receptor activation in cerebellar granule cells: an in vitro model of preconditioning to stimulate intrinsic survival pathways in neurons. Ann N Y Acad Sci 993:134–145, discussion 59–60

    CAS  PubMed  Google Scholar 

  19. Lin JH, Lou N, Kang N, Takano T, Hu F, Han X et al (2008) A central role of connexin 43 in hypoxic preconditioning. J Neurosci 28(3):681–695

    CAS  PubMed  Google Scholar 

  20. Andjelkovic AV, Stamatovic SM, Keep RF (2003) The protective effects of preconditioning on cerebral endothelial cells in vitro. J Cereb Blood Flow Metab 23(11):1348–1355

    CAS  PubMed  Google Scholar 

  21. Kapinya KJ, Lowl D, Futterer C, Maurer M, Waschke KF, Isaev NK et al (2002) Tolerance against ischemic neuronal injury can be induced by volatile anesthetics and is inducible NO synthase dependent. Stroke 33(7):1889–1898

    CAS  PubMed  Google Scholar 

  22. Mayanagi K, Gaspar T, Katakam PV, Busija DW (2007) Systemic administration of diazoxide induces delayed preconditioning against transient focal cerebral ischemia in rats. Brain Res 1168:106–111

    CAS  PubMed  Google Scholar 

  23. Bickler PE, Zhan X, Fahlman CS (2005) Isoflurane preconditions hippocampal neurons against oxygen-glucose deprivation: role of intracellular Ca2+ and mitogen-activated protein kinase signaling. Anesthesiology 103(3):532–539

    CAS  PubMed  Google Scholar 

  24. Kis B, Rajapakse NC, Snipes JA, Nagy K, Horiguchi T, Busija DW (2003) Diazoxide induces delayed pre-conditioning in cultured rat cortical neurons. J Neurochem 87(4):969–980

    CAS  PubMed  Google Scholar 

  25. Matchett GA, Martin RD, Zhang JH (2009) Hyperbaric oxygen therapy and cerebral ischemia: neuroprotective mechanisms. Neurol Res 31(2):114–121

    CAS  PubMed  Google Scholar 

  26. Bigdeli MR, Khoshbaten A (2008) In vivo preconditioning with normobaric hyperoxia induces ischemic tolerance partly by triggering tumor necrosis factor-alpha converting enzyme/tumor necrosis factor-alpha/nuclear factor-kappaB. Neuroscience 153(3):671–678

    CAS  PubMed  Google Scholar 

  27. Nishio S, Yunoki M, Chen ZF, Anzivino MJ, Lee KS (2000) Ischemic tolerance in the rat neocortex following hypothermic preconditioning. J Neurosurg 93(5):845–851

    CAS  PubMed  Google Scholar 

  28. Xu H, Aibiki M, Nagoya J (2002) Neuroprotective effects of hyperthermic preconditioning on infarcted volume after middle cerebral artery occlusion in rats: role of adenosine receptors. Crit Care Med 30(5):1126–1130

    CAS  PubMed  Google Scholar 

  29. Muramatsu H, Kariko K, Welsh FA (2004) Induction of tolerance to focal ischemia in rat brain: dissociation between cortical lesioning and spreading depression. J Cereb Blood Flow Metab 24(10):1167–1171

    CAS  PubMed  Google Scholar 

  30. Horiguchi T, Snipes JA, Kis B, Shimizu K, Busija DW (2006) Cyclooxygenase-2 mediates the development of cortical spreading depression-induced tolerance to transient focal cerebral ischemia in rats. Neuroscience 140(2):723–730

    CAS  PubMed  Google Scholar 

  31. Wang Q, Xiong L, Chen S, Liu Y, Zhu X (2005) Rapid tolerance to focal cerebral ischemia in rats is induced by preconditioning with electroacupuncture: window of protection and the role of adenosine. Neurosci Lett 381(1–2):158–162

    CAS  PubMed  Google Scholar 

  32. Xiong LZ, Yang J, Wang Q, Lu ZH (2007) Involvement of delta-and mu-opioid receptors in the delayed cerebral ischemic tolerance induced by repeated electroacupuncture preconditioning in rats. Chin Med J 120(5):394–399

    CAS  PubMed  Google Scholar 

  33. Ding YH, Young CN, Luan X, Li J, Rafols JA, Clark JC et al (2005) Exercise preconditioning ameliorates inflammatory injury in ischemic rats during reperfusion. Acta Neuropathol 109(3):237–246

    CAS  PubMed  Google Scholar 

  34. Blanck TJ, Haile M, Xu F, Zhang J, Heerdt P, Veselis RA et al (2000) Isoflurane pretreatment ameliorates postischemic neurologic dysfunction and preserves hippocampal Ca2+/calmodulin-dependent protein kinase in a canine cardiac arrest model. Anesthesiology 93(5):1285–1293

    CAS  PubMed  Google Scholar 

  35. Kanoria S, Jalan R, Seifalian AM, Williams R, Davidson BR (2007) Protocols and mechanisms for remote ischemic preconditioning: a novel method for reducing ischemia reperfusion injury. Transplantation 84(4):445–458

    PubMed  Google Scholar 

  36. Walsh SR, Tang T, Sadat U, Dutka DP, Gaunt ME (2007) Cardioprotection by remote ischaemic preconditioning [see comment]. Br J Anaesth 99(5):611–616

    CAS  PubMed  Google Scholar 

  37. Hausenloy DJ, Yellon DM (2008) Remote ischaemic preconditioning: underlying mechanisms and clinical application. Cardiovasc Res 79(3):377–386

    CAS  PubMed  Google Scholar 

  38. Ren C, Gao X, Steinberg GK, Zhao H (2008) Limb remote-preconditioning protects against focal ischemia in rats and contradicts the dogma of therapeutic time windows for preconditioning. Neuroscience 151(4):1099–1103

    CAS  PubMed  Google Scholar 

  39. He Z, Crook JE, Meschia JF, Brott TG, Dickson DW, McKinney M (2005) Aging blunts ischemic-preconditioning-induced neuroprotection following transient global ischemia in rats. Current Neurovascular Research 2(5):365–374

    CAS  PubMed  Google Scholar 

  40. Purcell JE, Lenhard SC, White RF, Schaeffer T, Barone FC, Chandra S (2003) Strain-dependent response to cerebral ischemic preconditioning: differences between spontaneously hypertensive and stroke prone spontaneously hypertensive rats. Neurosci Lett 339(2):151–155

    CAS  PubMed  Google Scholar 

  41. Wang WZ, Jones S, Stepheson LL, Khiabani KT, Zamboni WA (2002) Microvascular protection induced by late preconditioning was abolished in STZ-induced acute diabetic rats. J Reconstr Microsurg 18(8):689–696

    PubMed  Google Scholar 

  42. Kim SH, Kim EH, Lee BI, Heo JH (2008) Chronic cerebral hypoperfusion protects against focal ischemia, improves motor function, and results in vascular remodeling. Current Neurovascular Research 5:28–56

    PubMed  Google Scholar 

  43. Petcu EB, Kocher T, Kuhr A, Buga AM, Kloting I, Herndon JG et al (2008) Mild systemic inflammation has a neuroprotective effect after stroke in rats. Current Neurovascular Research 5(4):214–223

    PubMed  Google Scholar 

  44. Kitano H, Young JM, Cheng J, Wang L, Hurn PD, Murphy SJ (2007) Gender-specific response to isoflurane preconditioning in focal cerebral ischemia. J Cereb Blood Flow Metab 27(7):1377–1386

    CAS  PubMed  Google Scholar 

  45. Kasischke K, Huber R, Li H, Timmler M, Riepe MW (1999) Primary hypoxic tolerance and chemical preconditioning during estrus cycle in mice. Stroke 30(6):1256–1262

    CAS  PubMed  Google Scholar 

  46. Chan MT, Boet R, Ng SC, Poon WS, Gin T (2005) Effect of ischemic preconditioning on brain tissue gases and pH during temporary cerebral artery occlusion. Acta Neurochir Suppl 95:93–96

    CAS  PubMed  Google Scholar 

  47. Johnston SC (2004) Ischemic preconditioning from transient ischemic attacks? Data from the Northern California TIA Study. Stroke 35(11 Suppl 1):2680–2682

    PubMed  Google Scholar 

  48. Della Morte D, Abete P, Gallucci F, Scaglione A, D'Ambrosio D, Gargiulo G et al (2008) Transient ischemic attack before nonlacunar ischemic stroke in the elderly. J Stroke Cerebrovasc Dis 17(5):257–262

    PubMed  Google Scholar 

  49. Yellon DM, Alkhulaifi AM, Pugsley WB (1993) Preconditioning the human myocardium. Lancet 342(8866):276–277

    CAS  PubMed  Google Scholar 

  50. Walsh SR, Tang TY, Kullar P, Jenkins DP, Dutka DP, Gaunt ME (2008) Ischaemic preconditioning during cardiac surgery: systematic review and meta-analysis of perioperative outcomes in randomised clinical trials. Eur J Cardiothorac Surg 34(5):985–994

    PubMed  Google Scholar 

  51. Yu CH, Beattie WS (2006) The effects of volatile anesthetics on cardiac ischemic complications and mortality in CABG: a meta-analysis [see comment]. Can J Anaesth 53(9):906–918

    PubMed  Google Scholar 

  52. Symons JA, Myles PS (2006) Myocardial protection with volatile anaesthetic agents during coronary artery bypass surgery: a meta-analysis [see comment]. Br J Anaesth 97(2):127–136

    CAS  PubMed  Google Scholar 

  53. Takagi H, Manabe H, Kawai N, Goto SN, Umemoto T (2008) Review and meta-analysis of randomized controlled clinical trials of remote ischemic preconditioning in cardiovascular surgery. Am J Cardiol 102(11):1487–1488

    PubMed  Google Scholar 

  54. Plamondon H, Blondeau N, Heurteaux C, Lazdunski M (1999) Mutually protective actions of kainic acid epileptic preconditioning and sublethal global ischemia on hippocampal neuronal death: involvement of adenosine A1 receptors and K(ATP) channels. J Cereb Blood Flow Metab 19(12):1296–1308

    CAS  PubMed  Google Scholar 

  55. Simon R, Henshall D, Stoehr S, Meller R (2007) Endogenous mechanisms of neuroprotection [erratum appears in Epilepsia. 2007 Dec;48(12):2384]. Epilepsia 48(Suppl 8):72–73

    PubMed  Google Scholar 

  56. Dirnagl U, Simon RP, Hallenbeck JM (2003) Ischemic tolerance and endogenous neuroprotection. Trends Neurosci 26(5):248–254

    CAS  PubMed  Google Scholar 

  57. Perez-Pinzon MA, Alonso O, Kraydieh S, Dietrich WD (1999) Induction of tolerance against traumatic brain injury by ischemic preconditioning. NeuroReport 10(14):2951–2954

    CAS  PubMed  Google Scholar 

  58. Shein NA, Horowitz M, Shohami E (2007) Heat acclimation: a unique model of physiologically mediated global preconditioning against traumatic brain injury. Prog Brain Res 161:353–363

    PubMed  Google Scholar 

  59. Yellon DM, Downey JM (2003) Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev 83(4):1113–1151

    CAS  PubMed  Google Scholar 

  60. Kleindorfer D, Panagos P, Pancioli A, Khoury J, Kissela B, Woo D et al (2005) Incidence and short-term prognosis of transient ischemic attack in a population-based study. Stroke 36(4):720–723

    PubMed  Google Scholar 

  61. Johnston SC, Gress DR, Browner WS, Sidney S (2000) Short-term prognosis after emergency department diagnosis of TIA. JAMA 284(22):2901–2906

    CAS  PubMed  Google Scholar 

  62. Lovett JK, Dennis MS, Sandercock PA, Bamford J, Warlow CP, Rothwell PM (2003) Very early risk of stroke after a first transient ischemic attack. Stroke 34(8):e138–e140

    CAS  PubMed  Google Scholar 

  63. Coull AJ, Lovett JK, Rothwell PM (2004) Population based study of early risk of stroke after transient ischaemic attack or minor stroke: implications for public education and organisation of services. BMJ 328(7435):326

    CAS  PubMed  Google Scholar 

  64. Lisabeth LD, Ireland JK, Risser JM, Brown DL, Smith MA, Garcia NM et al (2004) Stroke risk after transient ischemic attack in a population-based setting. Stroke 35(8):1842–1846

    PubMed  Google Scholar 

  65. Chandratheva A, Mehta Z, Geraghty OC, Marquardt L, Rothwell PM (2009) Population-based study of risk and predictors of stroke in the first few hours after a TIA. Neurology 72(22):1941–1947

    CAS  PubMed  Google Scholar 

  66. LaManna JC, Chavez JC, Pichiule P (2004) Structural and functional adaptation to hypoxia in the rat brain. J Exp Biol 207(Pt 18):3163–3169

    CAS  PubMed  Google Scholar 

  67. Raval AP, Lin HW, Dave KR, Defazio RA, Della Morte D, Kim EJ et al (2008) Resveratrol and ischemic preconditioning in the brain. Curr Med Chem 15(15):1545–1551

    CAS  PubMed  Google Scholar 

  68. Zhao J, Moore AN, Redell JB, Dash PK (2007) Enhancing expression of Nrf2-driven genes protects the blood brain barrier after brain injury. J Neurosci 27(38):10240–10248

    CAS  PubMed  Google Scholar 

  69. Haljan G, Maitland A, Buchan A, Arora RC, King M, Haigh J et al (2009) The erythropoietin neuroprotective effect: assessment in CABG surgery (TENPEAKS): a randomized, double-blind, placebo controlled, proof-of-concept clinical trial. Stroke 40(8):2769–2775

    CAS  PubMed  Google Scholar 

  70. Dawson TM (2002) Preconditioning-mediated neuroprotection through erythropoietin? [erratum appears in Lancet 2002 May 18;359(9319):1782]. Lancet 359(9301):96–97

    PubMed  Google Scholar 

  71. Malhotra S, Savitz SI, Ocava L, Rosenbaum DM (2006) Ischemic preconditioning is mediated by erythropoietin through PI-3 kinase signaling in an animal model of transient ischemic attack. J Neurosci Res 83(1):19–27

    CAS  PubMed  Google Scholar 

  72. Dendorfer A, Heidbreder M, Hellwig-Burgel T, Johren O, Qadri F, Dominiak P (2005) Deferoxamine induces prolonged cardiac preconditioning via accumulation of oxygen radicals. Free Radic Biol Med 38(1):117–124

    CAS  PubMed  Google Scholar 

  73. Zhu Y, Zhang L, Gidday JM (2008) Deferroxamine preconditioning promotes long-lasting retinal ischemic tolerance. J Ocular Pharmacol Ther 24(6):527–535

    CAS  Google Scholar 

  74. Jones NM, Kardashyan L, Callaway JK, Lee EM, Beart PM (2008) Long-term functional and protective actions of preconditioning with hypoxia, cobalt chloride, and desferrioxamine against hypoxic-ischemic injury in neonatal rats. Pediatr Res 63(6):620–624

    CAS  PubMed  Google Scholar 

  75. Nakamura T, Keep RF, Hua Y, Schallert T, Hoff JT, Xi G (2004) Deferoxamine-induced attenuation of brain edema and neurological deficits in a rat model of intracerebral hemorrhage. J Neurosurg 100(4):672–678

    CAS  PubMed  Google Scholar 

  76. Gu Y, Hua Y, Keep RF, Morgenstern LB, Xi G (2009) Deferoxamine reduces intracerebral hematoma-induced iron accumulation and neuronal death in piglets. Stroke 40(6):2241–2243

    CAS  PubMed  Google Scholar 

  77. Freret T, Valable S, Chazalviel L, Saulnier R, Mackenzie ET, Petit E et al (2006) Delayed administration of deferoxamine reduces brain damage and promotes functional recovery after transient focal cerebral ischemia in the rat. Eur J NeuroSci 23(7):1757–1765

    PubMed  Google Scholar 

  78. Hoshi A, Nakahara T, Ogata M, Yamamoto T (2005) The critical threshold of 3-nitropropionic acid-induced ischemic tolerance in the rat. Brain Res 1050(1–2):33–39

    CAS  PubMed  Google Scholar 

  79. Coyle P, Jokelainen PT (1983) Differential outcome to middle cerebral artery occlusion in spontaneously hypertensive stroke-prone rats (SHRSP) and Wistar Kyoto (WKY) rats. Stroke 14:605–611

    CAS  PubMed  Google Scholar 

  80. Hua Y, Wu J, Pecina S, Yang S, Schallert T, Keep RF et al (2005) Ischemic preconditioning procedure induces behavioral deficits in the absence of brain injury? Neurol Res 27(3):261–267

    PubMed  Google Scholar 

  81. Komotar RJ, Zacharia BE, Mocco J, Connolly ES Jr (2008) Controversies in the surgical treatment of ruptured intracranial aneurysms: the First Annual J. Lawrence Pool Memorial Research Symposium—controversies in the management of cerebral aneurysms. Neurosurgery 62(2):396–407, discussion 5-7

    PubMed  Google Scholar 

  82. Woertgen C, Rothoerl RD, Albert R, Schebesch KM, Ullrich OW (2008) Effects of temporary clipping during aneurysm surgery. Neurol Res 30(5):542–546

    PubMed  Google Scholar 

  83. Newman MF, Kirchner JL, Phillips-Bute B, Gaver V, Grocott H, Jones RH et al (2001) Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery [see comment][erratum appears in N Engl J Med 2001 Jun 14;344(24):1876]. N Engl J Med 344(6):395–402

    CAS  PubMed  Google Scholar 

  84. van Dijk D, Keizer AM, Diephuis JC, Durand C, Vos LJ, Hijman R (2000) Neurocognitive dysfunction after coronary artery bypass surgery: a systematic review [see comment]. J Thorac Cardiovasc Surg 120(4):632–639

    PubMed  Google Scholar 

  85. Keizer AM, Hijman R, Kalkman CJ, Kahn RS, van Dijk D (2005) Octopus Study G. The incidence of cognitive decline after (not) undergoing coronary artery bypass grafting: the impact of a controlled definition. Acta Anaesthesiol Scand 49(9):1232–1235

    CAS  PubMed  Google Scholar 

  86. Heyer EJ, Adams DC, Solomon RA, Todd GJ, Quest DO, McMahon DJ et al (1998) Neuropsychometric changes in patients after carotid endarterectomy. Stroke 29(6):1110–1115

    CAS  PubMed  Google Scholar 

  87. Heyer EJ, Sharma R, Rampersad A, Winfree CJ, Mack WJ, Solomon RA et al (2002) A controlled prospective study of neuropsychological dysfunction following carotid endarterectomy. Arch Neurol 59(2):217–222

    PubMed  Google Scholar 

  88. Mayberg MR, Batjer HH, Dacey R, Diringer M, Haley EC, Heros RC et al (1994) Guidelines for the management of aneurysmal subarachnoid hemorrhage. A statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke 25(11):2315–2328

    CAS  PubMed  Google Scholar 

  89. Hua Y, Wu J, Keep RF, Hoff JT, Xi G (2003) Thrombin exacerbates brain edema in focal cerebral ischemia. Acta Neurochir Suppl 86:163–166

    CAS  PubMed  Google Scholar 

  90. Weststrate W, Hijdra A, de Gans J (1996) Brain infarcts in adults with bacterial meningitis. Lancet 347(8998):399

    CAS  PubMed  Google Scholar 

  91. Kastenbauer S, Pfister HW (2003) Pneumococcal meningitis in adults: spectrum of complications and prognostic factors in a series of 87 cases. Brain 126(Pt 5):1015–1025

    PubMed  Google Scholar 

  92. Levi M, van der Poll T (2005) Two-way interactions between inflammation and coagulation. Trends Cardiovasc Med 15(7):254–259

    CAS  PubMed  Google Scholar 

  93. de Souza AL, Seguro AC (2008) Two centuries of meningococcal infection: from Vieusseux to the cellular and molecular basis of disease. J Med Microbiol 57(Pt 11):1313–1321

    PubMed  Google Scholar 

  94. Bowen KK, Naylor M, Vemuganti R (2006) Prevention of inflammation is a mechanism of preconditioning-induced neuroprotection against focal cerebral ischemia. Neurochem Int 49(2):127–135

    CAS  PubMed  Google Scholar 

  95. Jacobson DL, Gange SJ, Rose NR, Graham NM (1997) Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin Immunol Immunopathol 84(3):223–243

    CAS  PubMed  Google Scholar 

  96. Keegan BM, Noseworthy JH (2002) Multiple sclerosis. Annu Rev Med 53:285–302

    CAS  PubMed  Google Scholar 

  97. Panitch HS (1994) Influence of infection on exacerbations of multiple sclerosis. Ann Neurol 36(Suppl):S25–S28

    PubMed  Google Scholar 

  98. de Borst GJ, Moll FL, van de Pavoordt HD, Mauser HW, Kelder JC, Ackerstaf RG (2001) Stroke from carotid endarterectomy: when and how to reduce perioperative stroke rate? Eur J Vasc Endovasc Surg 21(6):484–489

    PubMed  Google Scholar 

  99. Pinkerton JA Jr (2002) EEG as a criterion for shunt need in carotid endarterectomy. Ann Vasc Surg 16(6):756–761

    PubMed  Google Scholar 

  100. Pera J, Zawadzka M, Kaminska B, Szczudlik A (2004) Influence of chemical and ischemic preconditioning on cytokine expression after focal brain ischemia. J Neurosci Res 78(1):132–140

    CAS  PubMed  Google Scholar 

  101. Puisieux F, Deplanque D, Pu Q, Souil E, Bastide M, Bordet R (2000) Differential role of nitric oxide pathway and heat shock protein in preconditioning and lipopolysaccharide-induced brain ischemic tolerance. Eur J Pharmacol 389(1):71–78

    CAS  PubMed  Google Scholar 

  102. Zimmermann C, Ginis I, Furuya K, Klimanis D, Ruetzler C, Spatz M et al (2001) Lipopolysaccharide-induced ischemic tolerance is associated with increased levels of ceramide in brain and in plasma. Brain Res 895(1–2):59–65

    CAS  PubMed  Google Scholar 

  103. Furuya K, Ginis I, Takeda H, Chen Y, Hallenbeck JM (2001) Cell permeable exogenous ceramide reduces infarct size in spontaneously hypertensive rats supporting in vitro studies that have implicated ceramide in induction of tolerance to ischemia. J Cereb Blood Flow Metab 21(3):226–232

    CAS  PubMed  Google Scholar 

  104. Fisher M, Feuerstein G, Howells DW, Hurn PD, Kent TA, Savitz SI et al (2009) Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke 40(6):2244–2250

    PubMed  Google Scholar 

  105. Wang L, Traystman RJ, Murphy SJ (2008) Inhalational anesthetics as preconditioning agents in ischemic brain. Curr Opin Pharmacol 8(1):104–110

    CAS  PubMed  Google Scholar 

  106. Xi G, Keep RF, Hua Y, Xiang J, Hoff JT (1999) Attenuation of thrombin-induced brain edema by cerebral thrombin preconditioning. Stroke 30(6):1247–1255

    CAS  PubMed  Google Scholar 

  107. Masada T, Xi G, Hua Y, Keep RF (2000) The effects of thrombin preconditioning on focal cerebral ischemia in rats. Brain Res 867(1–2):173–179

    CAS  PubMed  Google Scholar 

  108. Hua Y, Keep RF, Hoff JT, Xi G (2003) Thrombin preconditioning attenuates brain edema induced by erythrocytes and iron. J Cereb Blood Flow Metab 23(12):1448–1454

    CAS  PubMed  Google Scholar 

  109. Saleh MC, Connell BJ, Saleh TM (2009) Ischemic tolerance following low dose NMDA involves modulation of cellular stress proteins. Brain Res 1247:212–220

    CAS  PubMed  Google Scholar 

  110. Samson D, Batjer HH, Bowman G, Mootz L, Krippner WJ Jr, Meyer YJ et al (1994) A clinical study of the parameters and effects of temporary arterial occlusion in the management of intracranial aneurysms. Neurosurgery 34(1):22–28, discussion 8-9

    CAS  PubMed  Google Scholar 

  111. Lavine SD, Masri LS, Levy ML, Giannotta SL (1997) Temporary occlusion of the middle cerebral artery in intracranial aneurysm surgery: time limitation and advantage of brain protection. J Neurosurg 87(6):817–824

    CAS  PubMed  Google Scholar 

  112. Tapuria N, Kumar Y, Habib MM, Abu Amara M, Seifalian AM, Davidson BR (2008) Remote ischemic preconditioning: a novel protective method from ischemia reperfusion injury—a review. J Surg Res 150(2):304–330

    PubMed  Google Scholar 

  113. Qin Z, Song S, Xi G, Silbergleit R, Keep RF, Hoff JT et al (2007) Preconditioning with hyperbaric oxygen attenuates brain edema after experimental intracerebral hemorrhage. Neurosurg Focus 22(5):E13

    PubMed  Google Scholar 

  114. Alex J, Laden G, Cale AR, Bennett S, Flowers K, Madden L et al (2005) Pretreatment with hyperbaric oxygen and its effect on neuropsychometric dysfunction and systemic inflammatory response after cardiopulmonary bypass: a prospective randomized double-blind trial. J Thorac Cardiovasc Surg 130(6):1623–1630

    PubMed  Google Scholar 

  115. Horiguchi T, Kis B, Rajapakse N, Shimizu K, Busija DW (2003) Opening of mitochondrial ATP-sensitive potassium channels is a trigger of 3-nitropropionic acid-induced tolerance to transient focal cerebral ischemia in rats. Stroke 34(4):1015–1020

    CAS  PubMed  Google Scholar 

  116. Hoshi A, Nakahara T, Kayama H, Yamamoto T (2006) Ischemic tolerance in chemical preconditioning: possible role of astrocytic glutamine synthetase buffering glutamate-mediated neurotoxicity. J Neurosci Res 84(1):130–141

    CAS  PubMed  Google Scholar 

  117. Zhu H, Sun S, Li H, Xu Y (2006) Cerebral ischemic tolerance induced by 3-nitropropionic acid is associated with increased expression of erythropoietin in rats. Journal of Huazhong University of Science and Technology Medical Sciences 26(4):440–443

    CAS  Google Scholar 

  118. Wiegand F, Liao W, Busch C, Castell S, Knapp F, Lindauer U et al (1999) Respiratory chain inhibition induces tolerance to focal cerebral ischemia. J Cereb Blood Flow Metab 19(11):1229–1237

    CAS  PubMed  Google Scholar 

  119. Yu ZF, Mattson MP (1999) Dietary restriction and 2-deoxyglucose administration reduce focal ischemic brain damage and improve behavioral outcome: evidence for a preconditioning mechanism. J Neurosci Res 57(6):830–839

    CAS  PubMed  Google Scholar 

  120. Li W, Luo Y, Zhang F, Signore AP, Gobbel GT, Simon RP et al (2006) Ischemic preconditioning in the rat brain enhances the repair of endogenous oxidative DNA damage by activating the base-excision repair pathway. J Cereb Blood Flow Metab 26(2):181–198

    PubMed  Google Scholar 

  121. Li L, Peng L, Zuo Z (2008) Isoflurane preconditioning increases B-cell lymphoma-2 expression and reduces cytochrome c release from the mitochondria in the ischemic penumbra of rat brain. Eur J Pharmacol 586(1–3):106–113

    CAS  PubMed  Google Scholar 

  122. Codaccioni JL, Velly LJ, Moubarik C, Bruder NJ, Pisano PS, Guillet BA (2009) Sevoflurane preconditioning against focal cerebral ischemia: inhibition of apoptosis in the face of transient improvement of neurological outcome. Anesthesiology 110(6):1271–1278

    CAS  PubMed  Google Scholar 

  123. Mayanagi K, Gaspar T, Katakam PV, Kis B, Busija DW (2007) The mitochondrial K(ATP) channel opener BMS-191095 reduces neuronal damage after transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab 27(2):348–355

    CAS  PubMed  Google Scholar 

  124. Chimon GN, Wong PT (1998) Ischemic tolerance and lipid peroxidation in the brain. NeuroReport 9(10):2269–2272

    Article  CAS  PubMed  Google Scholar 

  125. Barone FC, White RF, Spera PA, Ellison J, Currie RW, Wang X et al (1998) Ischemic preconditioning and brain tolerance: temporal histological and functional outcomes, protein synthesis requirement, and interleukin-1 receptor antagonist and early gene expression. Stroke 29(9):1937–1950, discussion 50-1

    CAS  PubMed  Google Scholar 

  126. Masada T, Hua Y, Xi G, Ennis SR, Keep RF (2001) Attenuation of ischemic brain edema and cerebrovascular injury after ischemic preconditioning in the rat. J Cereb Blood Flow Metab 21(1):22–33

    CAS  PubMed  Google Scholar 

  127. Cardenas A, Moro MA, Leza JC, O'Shea E, Davalos A, Castillo J et al (2002) Upregulation of TACE/ADAM17 after ischemic preconditioning is involved in brain tolerance. J Cereb Blood Flow Metab 22(11):1297–1302

    CAS  PubMed  Google Scholar 

  128. Zhang HX, Du GH, Zhang JT (2003) Ischemic pre-conditioning preserves brain mitochondrial functions during the middle cerebral artery occlusion in rat. Neurol Res 25(5):471–476

    PubMed  Google Scholar 

  129. Pradillo JM, Romera C, Hurtado O, Cardenas A, Moro MA, Leza JC et al (2005) TNFR1 upregulation mediates tolerance after brain ischemic preconditioning. J Cereb Blood Flow Metab 25(2):193–203

    CAS  PubMed  Google Scholar 

  130. Zhao L, Nowak TS Jr (2006) CBF changes associated with focal ischemic preconditioning in the spontaneously hypertensive rat. J Cereb Blood Flow Metab 26(9):1128–1140

    CAS  PubMed  Google Scholar 

  131. Zhao J, Sun S, Chen X (2006) Protective effects of focal ischemic preconditioning and HSP70 expression on middle cerebral artery occlusion in rats. Journal of Huazhong University of Science and Technology Medical Sciences 26(4):436–439

    Google Scholar 

  132. Mori T, Muramatsu H, Matsui T, McKee A, Asano T (2000) Possible role of the superoxide anion in the development of neuronal tolerance following ischaemic preconditioning in rats. Neuropathol Appl Neurobiol 26(1):31–40

    CAS  PubMed  Google Scholar 

  133. Alkayed NJ, Goyagi T, Joh HD, Klaus J, Harder DR, Traystman RJ et al (2002) Neuroprotection and P450 2C11 upregulation after experimental transient ischemic attack. Stroke 33(6):1677–1684

    CAS  PubMed  Google Scholar 

  134. Yoshida M, Nakakimura K, Cui YJ, Matsumoto M, Sakabe T (2004) Adenosine A(1) receptor antagonist and mitochondrial ATP-sensitive potassium channel blocker attenuate the tolerance to focal cerebral ischemia in rats. JCereb Blood Flow Metab 24(7):771–779

    CAS  PubMed  Google Scholar 

  135. Mullins PG, Reid DG, Hockings PD, Hadingham SJ, Campbell CA, Chalk JB et al (2001) Ischaemic preconditioning in the rat brain: a longitudinal magnetic resonance imaging (MRI) study. NMR Biomed 14(3):204–209

    CAS  PubMed  Google Scholar 

  136. Watanabe M, Katsura K, Ohsawa I, Mizukoshi G, Takahashi K, Asoh S et al (2008) Involvement of mitoKATP channel in protective mechanisms of cerebral ischemic tolerance. Brain Res 1238:199–207

    CAS  PubMed  Google Scholar 

  137. Taskapilioglu MO, Alkan T, Goren B, Tureyen K, Sahin S, Taskapilioglu O et al (2009) Neuronal protective effects of focal ischemic pre- and/or postconditioning on the model of transient focal cerebral ischemia in rats. J Clin Neurosci 16(5):693–697

    PubMed  Google Scholar 

  138. Xiong L, Zhu Z, Dong H, Hu W, Hou L, Chen S (2000) Hyperbaric oxygen preconditioning induces neuroprotection against ischemia in transient not permanent middle cerebral artery occlusion rat model. Chin Med J 113(9):836–839

    CAS  PubMed  Google Scholar 

  139. Prass K, Wiegand F, Schumann P, Ahrens M, Kapinya K, Harms C et al (2000) Hyperbaric oxygenation induced tolerance against focal cerebral ischemia in mice is strain dependent. Brain Res 871(1):146–150

    CAS  PubMed  Google Scholar 

  140. Abe H, Nowak TS Jr (2004) Induced hippocampal neuron protection in an optimized gerbil ischemia model: insult thresholds for tolerance induction and altered gene expression defined by ischemic depolarization. J Cereb Blood Flow Metab 24(1):84–97

    CAS  PubMed  Google Scholar 

  141. Dowden J, Corbett D (1999) Ischemic preconditioning in 18- to 20-month-old gerbils: long-term survival with functional outcome measures. Stroke 30(6):1240–1246

    CAS  PubMed  Google Scholar 

  142. Sugino T, Nozaki K, Takagi Y, Hashimoto N (1999) 3-Nitropropionic acid induces ischemic tolerance in gerbil hippocampus in vivo. Neurosci Lett 259(1):9–12

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health grants NS34709 (RFK), NS054724 (MMW), and NS039866 (GX). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard F. Keep.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keep, R.F., Wang, M.M., Xiang, J. et al. Is There a Place for Cerebral Preconditioning in the Clinic?. Transl. Stroke Res. 1, 4–18 (2010). https://doi.org/10.1007/s12975-009-0007-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-009-0007-7

Keywords

Navigation