Skip to main content

Advertisement

Log in

Lifetime management of severely calcified coronary lesions: the treatment algorithm focused on the shape of calcification

  • Invited Review Article
  • Published:
Cardiovascular Intervention and Therapeutics Aims and scope Submit manuscript

Abstract

The concept of lifetime management has not been discussed in the field of percutaneous coronary intervention (PCI), because the durability of drug-eluting stent (DES) is considered to be long enough for most patients. Furthermore, even if in-stent restenosis occurs, the treatment for in-stent restenosis is simple in most cases. On the other hand, the long-term clinical outcomes after DES implantation are worse in severely calcified coronary lesions than in non-calcified lesions. Moreover, the treatment for in-stent calcified restenosis or restenosis due to stent underexpansion is not simple. The concept of lifetime management of severely calcified lesions may be necessary like that of aortic stenosis. Recently, several algorithms have been published in PCI to severely calcified lesions, partly because of the emergence of IVL. These algorithms focus on the selection of cracking and debulking devices for the preparation of stenting. However, the optimal stent expansion does not guarantee the long-term patency, when the target lesion includes calcified nodules. Stent restenosis due to calcified nodules is difficult to manage. In this review article, we propose the algorithm for severely calcified lesions focused on the shape of calcification. We do not need to hesitate stenting when multiple cracks on circumferential calcification are observed by intravascular imaging devices. However, DCB may be an option as final device in some situations, when lifetime management of severely calcified lesions is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

This review article does not include original data.

References

  1. Tarantini G, Nai FL. Lifetime strategy of patients with aortic stenosis: the first cut is the deepest. JACC Cardiovasc Interv. 2021;14(15):1727–30.

    PubMed  Google Scholar 

  2. Matsushita K, Morel O, Ohlmann P. Contemporary issues and lifetime management in patients underwent transcatheter aortic valve replacement. Cardiovasc Interv Ther. 2023;38(3):275–86.

    PubMed  Google Scholar 

  3. Ormiston JA, Webber B, Ubod B, White J, Webster MW. Coronary stent durability and fracture: an independent bench comparison of six contemporary designs using a repetitive bend test. EuroIntervention. 2015;10(12):1449–55.

    PubMed  Google Scholar 

  4. Muramatsu T, Kozuma K, Tanabe K, Morino Y, Ako J, Nakamura S, et al. Clinical expert consensus document on drug-coated balloon for coronary artery disease from the Japanese association of cardiovascular intervention and therapeutics. Cardiovasc Interv Ther. 2023;38(2):166–76.

    PubMed  PubMed Central  Google Scholar 

  5. Giacoppo D, Alfonso F, Xu B, Claessen B, Adriaenssens T, Jensen C, et al. Drug-coated balloon angioplasty versus drug-eluting stent implantation in patients with coronary stent restenosis. J Am Coll Cardiol. 2020;75(21):2664–78.

    CAS  PubMed  Google Scholar 

  6. Guedeney P, Claessen BE, Mehran R, Mintz GS, Liu M, Sorrentino S, et al. Coronary calcification and long-term outcomes according to drug-eluting stent generation. JACC Cardiovasc Interv. 2020;13(12):1417–28.

    PubMed  Google Scholar 

  7. Kawashima H, Serruys PW, Hara H, Ono M, Gao C, Wang R, et al. 10-year all-cause mortality following percutaneous or surgical revascularization in patients with heavy calcification. JACC Cardiovasc Interv. 2022;15(2):193–204.

    PubMed  Google Scholar 

  8. Nomura T, Wada N, Ota I, Tasaka S, Ono K, Sakaue Y, et al. Early experience with coronary debulking devices in a newcomer facility after introducing revised facility criteria in Japan. Cardiovasc Interv Ther. 2023;38:104–12.

    PubMed  Google Scholar 

  9. Ali ZA, Brinton TJ, Hill JM, Maehara A, Matsumura M, Karimi Galougahi K, et al. Optical coherence tomography characterization of coronary lithoplasty for treatment of calcified lesions: first description. JACC Cardiovasc Imaging. 2017;10(8):897–906.

    PubMed  Google Scholar 

  10. Emori H, Shiono Y, Kuriyama N, Honda Y, Ebihara S, Kadooka K, et al. Calcium fracture after intravascular lithotripsy as assessed with optical coherence tomography. Circ J. 2023;87(6):799–805.

    PubMed  Google Scholar 

  11. Abdel-Wahab M, Toelg R, Byrne RA, Geist V, El-Mawardy M, Allali A, et al. High-speed rotational atherectomy versus modified balloons prior to drug-eluting stent implantation in severely calcified coronary lesions. Circ Cardiovasc Interv. 2018;11(10):e007415.

    PubMed  Google Scholar 

  12. Rheude T, Rai H, Richardt G, Allali A, Abdel-Wahab M, Sulimov DS, et al. Super high-pressure balloon versus scoring balloon to prepare severely calcified coronary lesions: the ISAR-CALC randomised trial. EuroIntervention. 2021;17(6):481–8.

    PubMed  PubMed Central  Google Scholar 

  13. Sugawara Y, Ueda T, Soeda T, Watanabe M, Okura H, Saito Y. Plaque modification of severely calcified coronary lesions by scoring balloon angioplasty using Lacrosse non-slip element: insights from an optical coherence tomography evaluation. Cardiovasc Interv Ther. 2019;34(3):242–8.

    PubMed  Google Scholar 

  14. Pinilla-Echeverri N, Bossard M, Hillani A, Chavarria JA, Cioffi GM, Dutra G, et al. Treatment of calcified lesions using a dedicated super-high pressure balloon: multicenter optical coherence tomography registry. Cardiovasc Revasc Med. 2023;52:49–58.

    PubMed  Google Scholar 

  15. Sardella G, Stefanini G, Leone PP, Boccuzzi G, Fovero NT, Van Mieghem N, et al. Coronary lithotripsy as elective or bail-out strategy after rotational atherectomy in the rota-shock registry. Am J Cardiol. 2023;198:1–8.

    PubMed  Google Scholar 

  16. Ikari Y, Saito S, Nakamura S, Shibata Y, Yamazaki S, Tanaka Y, et al. Device indication for calcified coronary lesions based on coronary imaging findings. Cardiovasc Interv Ther. 2023;38(2):163–5.

    PubMed  PubMed Central  Google Scholar 

  17. Allali A, Toelg R, Abdel-Wahab M, Hemetsberger R, Kastrati A, Mankerious N, et al. Combined rotational atherectomy and cutting balloon angioplasty prior to drug-eluting stent implantation in severely calcified coronary lesions: The PREPARE-CALC-COMBO study. Catheter Cardiovasc Interv. 2022;100(6):979–89.

    PubMed  Google Scholar 

  18. Tang Z, Bai J, Su SP, Lee PW, Peng L, Zhang T, et al. Aggressive plaque modification with rotational atherectomy and cutting balloon for optimal stent expansion in calcified lesions. Journal of geriatric cardiology : JGC. 2016;13(12):984–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Amemiya K, Yamamoto MH, Maehara A, Oyama Y, Igawa W, Ono M, et al. Effect of cutting balloon after rotational atherectomy in severely calcified coronary artery lesions as assessed by optical coherence tomography. Catheter Cardiovasc Interv. 2019;94(7):936–44.

    PubMed  Google Scholar 

  20. Kurata N, Ishihara T, Iida O, Tsujimura T, Ito K, Hata Y, et al. Predictors for calcium fracture with a novel cutting balloon: an optical coherence tomography study. JACC Cardiovasc Interv. 2022;15(8):904–6.

    PubMed  Google Scholar 

  21. Kawase Y, Saito N, Watanabe S, Bao B, Yamamoto E, Watanabe H, et al. Utility of a scoring balloon for a severely calcified lesion: bench test and finite element analysis. Cardiovasc Interv Ther. 2014;29(2):134–9.

    PubMed  Google Scholar 

  22. Zhu X, Umezu M, Iwasaki K. Finite element analysis of cutting balloon expansion in a calcified artery model of circular angle 180°: Effects of balloon-to-diameter ratio and number of blades facing calcification on potential calcification fracturing and perforation reduction. PLoS ONE. 2021;16(5):e0251404.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Mangieri A, Nerla R, Castriota F, Reimers B, Regazzoli D, Leone PP, et al. Cutting balloon to optimize predilation for stent implantation: The COPS randomized trial. Catheter Cardiovasc Interv. 2023;101(4):798–805.

    PubMed  Google Scholar 

  24. Baudinet T, Seguy B, Cetran L, Luttoo MK, Coste P, Gerbaud E. Bail-out therapy in ST-segment elevation myocardial infarction due to calcified lesion causing stent underexpansion: Intravascular lithotripsy is in the lead. J Cardiol Cases. 2021;23(6):264–6.

    PubMed  PubMed Central  Google Scholar 

  25. Okamura A, Ito H, Fujii K. Rotational atherectomy is useful to treat restenosis lesions due to crushing of a sirolimus-eluting stent implanted in severely calcified lesions: experimental study and initial clinical experience. J Invasive Cardiol. 2009;21(10):E191–6.

    PubMed  Google Scholar 

  26. Sakakura K, Ito Y, Shibata Y, Okamura A, Kashima Y, Nakamura S, et al. Clinical expert consensus document on rotational atherectomy from the Japanese association of cardiovascular intervention and therapeutics: update 2023. Cardiovasc Interv Ther. 2023;38:141–62.

    PubMed  PubMed Central  Google Scholar 

  27. Sakakura K, Ito Y, Shibata Y, Okamura A, Kashima Y, Nakamura S, et al. Clinical expert consensus document on rotational atherectomy from the Japanese association of cardiovascular intervention and therapeutics. Cardiovasc Interv Ther. 2021;36(1):1–18.

    PubMed  Google Scholar 

  28. Hachinohe D, Kashima Y, Hirata K, Kanno D, Kobayashi K, Kaneko U, et al. Treatment for in-stent restenosis requiring rotational atherectomy. J Interv Cardiol. 2018;31(6):747–54.

    PubMed  Google Scholar 

  29. Xu Y, Mintz GS, Tam A, McPherson JA, Iniguez A, Fajadet J, et al. Prevalence, distribution, predictors, and outcomes of patients with calcified nodules in native coronary arteries: a 3-vessel intravascular ultrasound analysis from providing regional observations to study predictors of events in the coronary tree (PROSPECT). Circulation. 2012;126(5):537–45.

    PubMed  Google Scholar 

  30. Lee JB, Mintz GS, Lisauskas JB, Biro SG, Pu J, Sum ST, et al. Histopathologic validation of the intravascular ultrasound diagnosis of calcified coronary artery nodules. Am J Cardiol. 2011;108(11):1547–51.

    PubMed  Google Scholar 

  31. Watanabe Y, Sakakura K, Taniguchi Y, Yamamoto K, Seguchi M, Tsukui T, et al. Comparison of clinical outcomes of intravascular ultrasound-calcified nodule between percutaneous coronary intervention with versus without rotational atherectomy in a propensity-score matched analysis. PLoS ONE. 2020;15(11):e0241836.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20(5):1262–75.

    CAS  PubMed  Google Scholar 

  33. Torii S, Sato Y, Otsuka F, Kolodgie FD, Jinnouchi H, Sakamoto A, et al. Eruptive calcified nodules as a potential mechanism of acute coronary thrombosis and sudden death. J Am Coll Cardiol. 2021;77(13):1599–611.

    PubMed  Google Scholar 

  34. Yamamoto MH, Maehara A, Song L, Matsumura M, Chin CY, Losquadro M, et al. Optical coherence tomography assessment of morphological characteristics in suspected coronary artery disease, but angiographically nonobstructive lesions. Cardiovasc Revasc Med. 2019;20(6):475–9.

    PubMed  Google Scholar 

  35. Jia H, Abtahian F, Aguirre AD, Lee S, Chia S, Lowe H, et al. In vivo diagnosis of plaque erosion and calcified nodule in patients with acute coronary syndrome by intravascular optical coherence tomography. J Am Coll Cardiol. 2013;62(19):1748–58.

    PubMed  Google Scholar 

  36. Ali ZA, Kereiakes D, Hill J, Saito S, Di Mario C, Honton B, et al. Safety and effectiveness of coronary intravascular lithotripsy for treatment of calcified nodules. JACC Cardiovasc Interv. 2023;16(9):1122–4.

    PubMed  Google Scholar 

  37. Jinnouchi H, Sakakura K, Taniguchi Y, Tsukui T, Watanabe Y, Yamamoto K, et al. Clinical outcomes and unique restenosis of calcified nodule in heavily calcified coronary artery. J Atheroscler Thromb. 2023;30(6):649–62.

    PubMed  Google Scholar 

  38. Morofuji T, Kuramitsu S, Shinozaki T, Jinnouchi H, Sonoda S, Domei T, et al. Clinical impact of calcified nodule in patients with heavily calcified lesions requiring rotational atherectomy. Catheter Cardiovasc Interv. 2021;97(1):10–9.

    PubMed  Google Scholar 

  39. Pengchata P, Pongakasira R, Wongsawangkit N, Phichaphop A, Wongpraparut N. Characteristics and pattern of calcified nodule and/or nodular calcification detected by intravascular ultrasound on the device-oriented composite endpoint (DoCE) in patients with heavily calcified lesions who underwent rotational atherectomy-assisted percutaneous coronary intervention. J Interv Cardiol. 2023;2023:6456695.

    PubMed  PubMed Central  Google Scholar 

  40. Hamana T, Kawamori H, Toba T, Kakizaki S, Nakamura K, Fujimoto D, et al. Predictors of target lesion revascularisation after drug-eluting stent implantation for calcified nodules: an optical coherence tomography study. EuroIntervention. 2023;19(2):e123–33.

    PubMed  Google Scholar 

  41. Nakamura N, Torii S, Tsuchiya H, Nakano A, Oikawa Y, Yajima J, et al. Formation of calcified nodule as a cause of early in-stent restenosis in patients undergoing dialysis. J Am Heart Assoc. 2020;9(19):e016595.

    PubMed  PubMed Central  Google Scholar 

  42. Takahashi Y, Otake H, Kuramitsu S, Ohya M, Horie K, Kawamoto H, et al. Prevalence and outcomes of stent thrombosis with in-stent calcified nodules: substudy from the REAL-ST registry. EuroIntervention. 2022;18(9):749–58.

    PubMed  Google Scholar 

  43. Sato T, Matsumura M, Yamamoto K, Shlofmitz E, Moses JW, Khalique OK, et al. Impact of eruptive vs noneruptive calcified nodule morphology on acute and long-term outcomes after stenting. JACC Cardiovasc Interv. 2023;16(9):1024–35.

    PubMed  Google Scholar 

  44. Oka T, Sanada R, Urabe Y, Mitsuba N, Fukuda Y, Ueda H. Effectiveness of using both rotational atherectomy with smallest burr and orbital atherectomy system for stentless treatment of calcified nodules. Cardiovasc Interv Ther. 2023. https://doi.org/10.1007/s12928-023-00931-0.

    Article  PubMed  Google Scholar 

  45. Sakakura K, Jinnouchi H, Taniguchi Y, Tsukui T, Watanabe Y, Yamamoto K, et al. Study design and rationale for comparison of the incidence of slow flow following rotational atherectomy to severely calcified coronary artery lesions between short single session and long single session: the randomized ROTASOLO trial. Cardiol J. 2023. https://doi.org/10.5603/CJ.a2023.0030.

    Article  PubMed  Google Scholar 

  46. Oka A, Okada T, Nosaka K, Doi M. A case combining orbital and rotational atherectomy systems for a bifurcation lesion with a severely calcified nodule. AsiaIntervention. 2023;9(1):62–3.

    PubMed  PubMed Central  Google Scholar 

  47. Ishida M, Ishisone T, Kimura T, Morino Y. Stent-less percutaneous coronary intervention of calcified nodule causing non-ST-elevation myocardial infarction - serial optical coherence tomography follow-up after rotational atherectomy followed by drug-coated balloon angioplasty. Circ J. 2022;86(2):336.

    PubMed  Google Scholar 

  48. Adachi Y, Kinoshita Y, Suzuki T. Efficacy of combination atherectomy of orbital atherectomy system and rotational atherectomy for severely calcified nodule. Cardiovasc Revasc Med. 2021;28:100–1.

    PubMed  Google Scholar 

  49. Nagai T, Mizobuchi M, Funatsu A, Kobayashi T, Nakamura S. Acute and mid-term outcomes of drug-coated balloon following rotational atherectomy. Cardiovasc Interv Ther. 2020;35(3):242–9.

    CAS  PubMed  Google Scholar 

  50. Shiraishi J, Kataoka E, Ozawa T, Shiraga A, Ikemura N, Matsubara Y, et al. Angiographic and clinical outcomes after stent-less coronary intervention using rotational atherectomy and drug-coated balloon in patients with de novo lesions. Cardiovasc Revasc Med. 2020;21(5):647–53.

    PubMed  Google Scholar 

  51. Iwasaki Y, Koike J, Ko T, Funatsu A, Kobayashi T, Ikeda T, et al. Comparison of drug-eluting stents vs. drug-coated balloon after rotational atherectomy for severely calcified lesions of nonsmall vessels. Heart Vessels. 2021;36(2):189–99.

    PubMed  Google Scholar 

  52. Ueno K, Morita N, Kojima Y, Takahashi H, Kawasaki M, Ito R, et al. Safety and long-term efficacy of drug-coated balloon angioplasty following rotational atherectomy for severely calcified coronary lesions compared with new generation drug-eluting Stents. J Interv Cardiol. 2019;2019:9094178.

    PubMed  PubMed Central  Google Scholar 

  53. Angsubhakorn N, Kang N, Fearon C, Techorueangwiwat C, Swamy P, Brilakis ES, et al. Contemporary Management of Severely Calcified Coronary Lesions. J Personal Med. 2022;12(10):1638.

    Google Scholar 

  54. Hennessey B, Pareek N, Macaya F, Yeoh J, Shlofmitz E, Gonzalo N, et al. Contemporary percutaneous management of coronary calcification: current status and future directions. Open heart. 2023;10(1):e002182.

    PubMed  PubMed Central  Google Scholar 

  55. Sung JG, Lo ST, Lam H. Contemporary interventional approach to calcified coronary artery disease. Korean Circulat J. 2023;53(2):55–68.

    CAS  Google Scholar 

  56. Mody R, Dash D, Mody B, Maligireddy AR, Agrawal A, Rastogi L, et al. Can most calcified coronary stenosis be optimized with coronary intravascular lithotripsy? JACC Asia. 2023;3(2):185–97.

    PubMed  PubMed Central  Google Scholar 

  57. Zhang M, Matsumura M, Usui E, Noguchi M, Fujimura T, Fall KN, et al. Intravascular ultrasound-derived calcium score to predict stent expansion in severely calcified lesions. Circ Cardiovasc Interv. 2021;14(10):e010296.

    CAS  PubMed  Google Scholar 

  58. Fujino A, Mintz GS, Matsumura M, Lee T, Kim SY, Hoshino M, et al. A new optical coherence tomography-based calcium scoring system to predict stent underexpansion. EuroIntervention. 2018;13(18):e2182–9.

    PubMed  Google Scholar 

  59. Fujii K, Kubo T, Otake H, Nakazawa G, Sonoda S, Hibi K, et al. Expert consensus statement for quantitative measurement and morphological assessment of optical coherence tomography: update 2022. Cardiovasc Interv Ther. 2022;37(2):248–54.

    PubMed  Google Scholar 

  60. Saito Y, Kobayashi Y, Fujii K, Sonoda S, Tsujita K, Hibi K, et al. Clinical expert consensus document on intravascular ultrasound from the Japanese Association of Cardiovascular Intervention and Therapeutics (2021). Cardiovasc Interv Ther. 2022;37(1):40–51.

    PubMed  Google Scholar 

  61. Hamana T, Kawamori H, Toba T, Nishimori M, Tanimura K, Kakizaki S, et al. Prediction of the debulking effect of rotational atherectomy using optical frequency domain imaging: a prospective study. Cardiovasc Interv Ther. 2023;38(3):316–26.

    PubMed  PubMed Central  Google Scholar 

  62. Sonoda S, Hibi K, Okura H, Fujii K, Node K, Kobayashi Y, et al. Current clinical use of intravascular ultrasound imaging to guide percutaneous coronary interventions (update). Cardiovasc Interv Ther. 2023;38(1):1–7.

    PubMed  Google Scholar 

  63. Sakakura K, Taniguchi Y, Yamamoto K, Tsukui T, Seguchi M, Wada H, et al. Comparison of the incidence of slow flow after rotational atherectomy with IVUS-crossable versus IVUS-uncrossable calcified lesions. Sci Rep. 2020;10(1):11362.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichi Sakakura.

Ethics declarations

Conflict of interest

Dr. Sakakura has received speaking honoraria from Abbott Vascular, Boston Scientific, Nipro, and Terumo. Dr. Sakakura has served as a proctor for Rotablator for Boston Scientific. Dr. Sakakura has served as a consultant for Boston Scientific. Dr. Jinnouchi has received speaking honoraria from Boston Scientific, Nipro, and Terumo. Dr. Yamamoto has received speaking honoraria from Abbott Vascular and Boston Scientific. Dr. Yamamoto has served as a consultant for Boston Scientific.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakakura, K., Jinnouchi, H., Taniguchi, Y. et al. Lifetime management of severely calcified coronary lesions: the treatment algorithm focused on the shape of calcification. Cardiovasc Interv and Ther 38, 375–380 (2023). https://doi.org/10.1007/s12928-023-00950-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12928-023-00950-x

Keywords

Navigation