Skip to main content
Log in

Interventional Options for Coronary Artery Calcification

  • Interventional Cardiology (S Rao, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Coronary artery calcification is an integral process in atherogenesis. When it is moderate or severe, coronary artery calcification presents several challenges to percutaneous coronary intervention. Historically, these difficulties have caused percutaneous coronary intervention of calcified lesions to be associated with lower rates of procedural success, higher rates of angiographic complications, and higher rates of subsequent adverse cardiovascular events. With growth of technologies and maturation of technique for atheroablation, in particular rotational atherectomy and orbital atherectomy, percutaneous coronary intervention of calcified coronary lesions has become possible with an extremely high success rate and a favorable safety profile. In this focused review, we present an updated overview of the pathobiology of coronary artery calcification and discuss the current slate of options for interventional management of calcified coronary lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Sangiorgi G, Rumberger JA, Severson A, et al. Arterial calcification and not lumen stenosis is highly correlated with atherosclerotic plaque burden in humans: a histologic study of 723 coronary artery segments using nondecalcifying methodology. J Am Coll Cardiol. 1998;31:126–33.

    Article  CAS  PubMed  Google Scholar 

  2. Allison MA, Criqui MH, Wright CM. Patterns and risk factors for systemic calcified atherosclerosis. Arterioscler Thromb Vasc Biol. 2004;24:331–6.

    Article  CAS  PubMed  Google Scholar 

  3. Vengrenyuk Y, Carlier S, Xanthos S, et al. A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc Natl Acad Sci U S A. 2006;103:14678–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Ehara S, Kobayashi Y, Yoshiyama M, et al. Spotty calcification typifies the culprit plaque in patients with acute myocardial infarction: an intravascular ultrasound study. Circulation. 2004;110:3424–9.

    Article  PubMed  Google Scholar 

  5. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20:1262–75.

    Article  CAS  PubMed  Google Scholar 

  6. Baber U, Mehran R, Sartori S, et al. Prevalence, impact, and predictive value of detecting subclinical coronary and carotid atherosclerosis in asymptomatic adults: the BioImage study. J Am Coll Cardiol. 2015;65:1065–74. This large prospective cohort study demonstrated utility of coronary artery calcification for reclassification of individuals deemed at intermediate risk based on traditional risk factors.

    Article  PubMed  Google Scholar 

  7. Gepner AD, Young R, Delaney JA et al. Comparison of coronary artery calcium presence, carotid plaque presence, and carotid intima-media thickness for cardiovascular disease prediction in the Multi-Ethnic Study of Atherosclerosis. Circ Cardiovasc Imaging 2015;8.

  8. Stary HC, Chandler AB, Dinsmore RE, et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation. 1995;92:1355–74.

    Article  CAS  PubMed  Google Scholar 

  9. Amann K. Media calcification and intima calcification are distinct entities in chronic kidney disease. Clin J Am Soc Nephrol. 2008;3:1599–605.

    Article  PubMed  Google Scholar 

  10. Lehto S, Niskanen L, Suhonen M, Rönnemaa T, Laakso M. Medial artery calcification: a neglected harbinger of cardiovascular complications in non–insulin-dependent diabetes mellitus. Arterioscler Thromb Vasc Biol. 1996;16:978–83.

    Article  CAS  PubMed  Google Scholar 

  11. Madhavan MV, Tarigopula M, Mintz GS, Maehara A, Stone GW, Généreux P. Coronary artery calcification pathogenesis and prognostic implications. J Am Coll Cardiol. 2014;63:1703–14.

    Article  CAS  PubMed  Google Scholar 

  12. Blacher J, Guerin AP, Pannier B, Marchais SJ, London GM. Arterial calcifications, arterial stiffness, and cardiovascular risk in end-stage renal disease. Hypertension. 2001;38:938–42.

    Article  CAS  PubMed  Google Scholar 

  13. Yu SY. Calcification processes in atherosclerosis. Adv Exp Med Biol. 1974;43:403–25.

    Article  CAS  PubMed  Google Scholar 

  14. Schmid K, McSharry WO, Pameijer CH, Binette JP. Chemical and physicochemical studies on the mineral deposits of the human atherosclerotic aorta. Atherosclerosis. 1980;37:199–210.

    Article  CAS  PubMed  Google Scholar 

  15. Demer LL, Tintut Y. Vascular calcification: pathobiology of a multifaceted disease. Circulation. 2008;117:2938–48.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Reynolds JL, Joannides AJ, Skepper JN, et al. Human vascular smooth muscle cells undergo vesicle-mediated calcification in response to changes in extracellular calcium and phosphate concentrations: a potential mechanism for accelerated vascular calcification in ESRD. J Am Soc Nephrol. 2004;15:2857–67.

    Article  CAS  PubMed  Google Scholar 

  17. Speer MY, Yang H-Y, Brabb T, et al. Smooth muscle cells give rise to osteochondrogenic precursors and chondrocytes in calcifying arteries. Circ Res. 2009;104:733–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. New SE, Goettsch C, Aikawa M, et al. Macrophage-derived matrix vesicles: an alternative novel mechanism for microcalcification in atherosclerotic plaques. Circ Res. 2013;113:72–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Wada T, McKee MD, Steitz S, Giachelli CM. Calcification of vascular smooth muscle cell cultures: inhibition by osteopontin. Circ Res. 1999;84:166–78.

    Article  CAS  PubMed  Google Scholar 

  20. Libby P, Tabas I, Fredman G, Fisher EA. Inflammation and its resolution as determinants of acute coronary syndromes. Circ Res. 2014;114:1867–79.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Aikawa E, Nahrendorf M, Figueiredo JL, et al. Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo. Circulation. 2007;116:2841–50.

    Article  CAS  PubMed  Google Scholar 

  22. Menini S, Iacobini C, Ricci C, et al. The galectin-3/RAGE dyad modulates vascular osteogenesis in atherosclerosis. Cardiovasc Res. 2013;100:472–80.

    Article  CAS  PubMed  Google Scholar 

  23. Rajavashisth T, Qiao JH, Tripathi S, et al. Heterozygous osteopetrotic (op) mutation reduces atherosclerosis in LDL receptor- deficient mice. J Clin Invest. 1998;101:2702–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Deuell KA, Callegari A, Giachelli CM, Rosenfeld ME, Scatena M. RANKL enhances macrophage paracrine pro-calcific activity in high phosphate-treated smooth muscle cells: dependence on IL-6 and TNF-alpha. J Vasc Res. 2012;49:510–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Motoyama S, Kondo T, Sarai M, et al. Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol. 2007;50:319–26.

    Article  PubMed  Google Scholar 

  26. Pflederer T, Marwan M, Schepis T, et al. Characterization of culprit lesions in acute coronary syndromes using coronary dual-source CT angiography. Atherosclerosis. 2010;211:437–44.

    Article  CAS  PubMed  Google Scholar 

  27. Huang H, Virmani R, Younis H, Burke AP, Kamm RD, Lee RT. The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation. 2001;103:1051–6.

    Article  CAS  PubMed  Google Scholar 

  28. Takebayashi H, Kobayashi Y, Mintz GS, et al. Intravascular ultrasound assessment of lesions with target vessel failure after sirolimus-eluting stent implantation. Am J Cardiol. 2005;95:498–502.

    Article  CAS  PubMed  Google Scholar 

  29. Vavuranakis M, Toutouzas K, Stefanadis C, Chrisohou C, Markou D, Toutouzas P. Stent deployment in calcified lesions: can we overcome calcific restraint with high-pressure balloon inflations? Catheter Cardiovasc Interv. 2001;52:164–72.

    Article  CAS  PubMed  Google Scholar 

  30. Virmani R, Farb A, Burke AP. Coronary angioplasty from the perspective of atherosclerotic plaque: morphologic predictors of immediate success and restenosis. Am Heart J. 1994;127:163–79.

    Article  CAS  PubMed  Google Scholar 

  31. Kobayashi Y, Okura H, Kume T, et al. Impact of target lesion coronary calcification on stent expansion. Circ J. 2014;78:2209–14.

    Article  PubMed  Google Scholar 

  32. Fitzgerald PJ, Ports TA, Yock PG. Contribution of localized calcium deposits to dissection after angioplasty. An observational study using intravascular ultrasound. Circulation. 1992;86:64–70.

    Article  CAS  PubMed  Google Scholar 

  33. Shimony A, Zahger D, Van Straten M, et al. Incidence, risk factors, management and outcomes of coronary artery perforation during percutaneous coronary intervention. Am J Cardiol. 2009;104:1674–7.

    Article  PubMed  Google Scholar 

  34. Moussa I, Ellis SG, Jones M, et al. Impact of coronary culprit lesion calcium in patients undergoing paclitaxel-eluting stent implantation (a TAXUS-IV sub study). Am J Cardiol. 2005;96:1242–7.

    Article  PubMed  Google Scholar 

  35. Mintz GS, Popma JJ, Pichard AD, et al. Patterns of calcification in coronary artery disease: a statistical analysis of intravascular ultrasound and coronary angiography in 1155 lesions. Circulation. 1995;91:1959–65.

    Article  CAS  PubMed  Google Scholar 

  36. Yabushita H, Bouma BE, Houser SL, et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation. 2002;106:1640–5.

    Article  PubMed  Google Scholar 

  37. Mehanna E, Bezerra HG, Prabhu D, et al. Volumetric characterization of human coronary calcification by frequency-domain optical coherence tomography. Circ J. 2013;77:2334–40.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Ryan TJ, Faxon DP, Gunnar RM, et al. Guidelines for percutaneous transluminal coronary angioplasty. A report of the American College of Cardiology/American Heart Association Task Force on Assessment of Diagnostic and Therapeutic Cardiovascular Procedures (Subcommittee on Percutaneous Transluminal Coronary Angioplasty). Circulation. 1988;78:486–502.

    Article  CAS  PubMed  Google Scholar 

  39. Bredlau CE, Roubin GS, Leimgruber PP, Douglas Jr JS, King 3rd SB, Gruentzig AR. In-hospital morbidity and mortality in patients undergoing elective coronary angioplasty. Circulation. 1985;72:1044–52.

    Article  CAS  PubMed  Google Scholar 

  40. Bangalore S, Vlachos HA, Selzer F, et al. Percutaneous coronary intervention of moderate to severe calcified coronary lesions: insights from the National Heart, Lung, and Blood Institute Dynamic Registry. Catheter Cardiovasc Interv. 2011;77:22–8.

    Article  PubMed Central  PubMed  Google Scholar 

  41. De Bruyne B, Fearon WF, Pijls NH, et al. Fractional flow reserve-guided PCI for stable coronary artery disease. N Engl J Med. 2014;371:1208–17.

    Article  PubMed  Google Scholar 

  42. Pijls NH, Fearon WF, Tonino PA, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) study. J Am Coll Cardiol. 2010;56:177–84.

    Article  PubMed  Google Scholar 

  43. Topol EJ, Nissen SE. Our preoccupation with coronary luminology. The dissociation between clinical and angiographic findings in ischemic heart disease. Circulation. 1995;92:2333–42.

    Article  CAS  PubMed  Google Scholar 

  44. Farkouh ME, Domanski M, Sleeper LA, et al. Strategies for multivessel revascularization in patients with diabetes. N Engl J Med. 2012;367:2375–84.

    Article  CAS  PubMed  Google Scholar 

  45. Serruys PW, Morice MC, Kappetein AP, et al. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N Engl J Med. 2009;360:961–72.

    Article  CAS  PubMed  Google Scholar 

  46. Waller BF. “Crackers, breakers, stretchers, drillers, scrapers, shavers, burners, welders and melters”—the future treatment of atherosclerotic coronary artery disease? A clinical-morphologic assessment. J Am Coll Cardiol. 1989;13:969–87.

    Article  CAS  PubMed  Google Scholar 

  47. Tomey MI, Kini AS, Sharma SK. Current status of rotational atherectomy. JACC Cardiovasc Interv. 2014;7:345–53.

    Article  PubMed  Google Scholar 

  48. Hansen DD, Auth DC, Vracko R, Ritchie JL. Rotational atherectomy in atherosclerotic rabbit iliac arteries. Am Heart J. 1988;115:160–5.

    Article  CAS  PubMed  Google Scholar 

  49. Abdel-Wahab M, Richardt G, Joachim Buttner H, et al. High-speed rotational atherectomy before paclitaxel-eluting stent implantation in complex calcified coronary lesions: the randomized ROTAXUS (Rotational Atherectomy Prior to Taxus Stent Treatment for Complex Native Coronary Artery Disease) trial. JACC Cardiovasc Interv. 2013;6:10–9. This is the largest randomized clinical trial of rotational atherectomy in the drug-eluting stent era.

    Article  PubMed  Google Scholar 

  50. Cavusoglu E, Kini AS, Marmur JD, Sharma SK. Current status of rotational atherectomy. Catheter Cardiovasc Interv. 2004;62:485–98.

    Article  PubMed  Google Scholar 

  51. Ellis SG, Popma JJ, Buchbinder M, et al. Relation of clinical presentation, stenosis morphology, and operator technique to the procedural results of rotational atherectomy and rotational atherectomy-facilitated angioplasty. Circulation. 1994;89:882–92.

    Article  CAS  PubMed  Google Scholar 

  52. Hanna GP, Yhip P, Fujise K, et al. Intracoronary adenosine administered during rotational atherectomy of complex lesions in native coronary arteries reduces the incidence of no-reflow phenomenon. Catheter Cardiovasc Interv. 1999;48:275–8.

    Article  CAS  PubMed  Google Scholar 

  53. Ritchie JL, Hansen DD, Intlekofer MJ, Hall M, Auth DC. Rotational approaches to atherectomy and thrombectomy. Z Kardiol. 1987;76 Suppl 6:59–65.

    PubMed  Google Scholar 

  54. Heuser RR. Treatment of lower extremity vascular disease: the Diamondback 360 degrees Orbital Atherectomy System. Expert Rev Med Devices. 2008;5:279–86.

    Article  PubMed  Google Scholar 

  55. Parikh K, Chandra P, Choksi N, Khanna P, Chambers J. Safety and feasibility of orbital atherectomy for the treatment of calcified coronary lesions: the ORBIT I trial. Catheter Cardiovasc Interv. 2013;81:1134–9. This study established the safety and feasibility of orbital atherectomy in the coronary arteries.

    Article  PubMed  Google Scholar 

  56. Sulimov DS, Abdel-Wahab M, Toelg R, Kassner G, Geist V, Richardt G. Stuck rotablator: the nightmare of rotational atherectomy. EuroIntervention. 2013;9:251–8.

    Article  PubMed  Google Scholar 

  57. Bhatt P, Parikh P, Patel A, et al. Long-term safety and performance of the orbital atherectomy system for treating calcified coronary artery lesions: 5-year follow-up in the ORBIT I trial. Cardiovasc Revasc Med. 2015;16:213–6.

    Article  PubMed  Google Scholar 

  58. Chambers JW, Feldman RL, Himmelstein SI, et al. Pivotal trial to evaluate the safety and efficacy of the orbital atherectomy system in treating de novo, severely calcified coronary lesions (ORBIT II). JACC Cardiovasc Interv. 2014;7:510–8. This was the pivotal trial to evaluate safety and efficacy of orbtal atherectomy for the coronary arteries.

    Article  PubMed  Google Scholar 

  59. Genereux P, Lee AC, Kim CY, et al. Orbital atherectomy for treating de novo severely calcified coronary narrowing (1-year results from the pivotal ORBIT II trial). Am J Cardiol. 2015;115:1685–90.

    Article  PubMed  Google Scholar 

  60. Kini AS, Vengrenyuk Y, Pena J et al. Optical coherence tomography assessment of the mechanistic effects of rotational and orbital atherectomy in severely calcified coronary lesions. Catheter Cardiovasc Interv. 2015.

  61. Bilodeau L, Fretz EB, Taeymans Y, Koolen J, Taylor K, Hilton DJ. Novel use of a high-energy excimer laser catheter for calcified and complex coronary artery lesions. Catheter Cardiovasc Interv. 2004;62:155–61.

    Article  PubMed  Google Scholar 

  62. Ahmed WH, al Anazi MM, Bittl JA. Excimer laser-facilitated angioplasty for undilatable coronary narrowings. Am J Cardiol. 1996;78:1045–6.

    Article  CAS  PubMed  Google Scholar 

  63. Henson KD, Leon MB, Popma JJ, et al. Treatment of refractory coronary occlusions with a new excimer laser catheter: preliminary clinical observations. Coron Artery Dis. 1993;4:1001–6.

    Article  CAS  PubMed  Google Scholar 

  64. Wolfe CL, Landin RJ, Linnemeier TJ, et al. Successful excimer laser angioplasty following unsuccessful primary balloon angioplasty. Catheter Cardiovasc Diagn. 1993;28:273–8.

    Article  CAS  Google Scholar 

  65. Fretz EB, Smith P, Hilton JD. Initial experience with a low profile, high energy excimer laser catheter for heavily calcified coronary lesion debulking: parameters and results of first seven human case experiences. J Interv Cardiol. 2001;14:433–7.

    Article  CAS  PubMed  Google Scholar 

  66. Ben-Dor I, Maluenda G, Pichard AD, et al. The use of excimer laser for complex coronary artery lesions. Cardiovasc Revasc Med. 2011;12:69.e1–8.

    Google Scholar 

  67. Reifart N, Vandormael M, Krajcar M, et al. Randomized comparison of angioplasty of complex coronary lesions at a single center. Excimer Laser, Rotational Atherectomy, and Balloon Angioplasty Comparison (ERBAC) Study. Circulation. 1997;96:91–8.

    Article  CAS  PubMed  Google Scholar 

  68. Tian W, Mahmoudi M, Lhermusier T, et al. Comparison of rotational atherectomy, plain old balloon angioplasty, and cutting-balloon angioplasty prior to drug-eluting stent implantation for the treatment of heavily calcified coronary lesions. J Invasive Cardiol. 2015;27:387–91.

    PubMed  Google Scholar 

  69. Karvouni E, Stankovic G, Albiero R, et al. Cutting balloon angioplasty for treatment of calcified coronary lesions. Catheter Cardiovasc Interv. 2001;54:473–81.

    Article  CAS  PubMed  Google Scholar 

  70. Kovacic JC, Kini A, Banerjee S, et al. Patients with 3-vessel coronary artery disease and impaired ventricular function undergoing PCI with Impella 2.5 hemodynamic support have improved 90-day outcomes compared to intra-aortic balloon pump: a sub-study of the PROTECT II trial. J Interv Cardiol. 2015;28:32–40.

    Article  PubMed  Google Scholar 

  71. Rihal CS, Naidu SS, Givertz MM, et al. 2015 SCAI/ACC/HFSA/STS Clinical Expert Consensus Statement on the Use of Percutaneous Mechanical Circulatory Support Devices in Cardiovascular Care: Endorsed by the American Heart Assocation, the Cardiological Society of India, and Sociedad Latino Americana de Cardiologia Intervencion; Affirmation of Value by the Canadian Association of Interventional Cardiology-Association Canadienne de Cardiologie d'intervention. J Am Coll Cardiol. 2015;65:e7–26.

    Article  PubMed  Google Scholar 

  72. Levine GN, Bates ER, Blankenship JC, et al. 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. J Am Coll Cardiol. 2011;58:e44–122.

    Article  PubMed  Google Scholar 

  73. Tomey M, Mehran R. Dual antiplatelet therapy dilemmas: duration and choice of antiplatelets in acute coronary syndromes. Curr Cardiol Rep. 2013;15:405.

    Article  PubMed  Google Scholar 

  74. Mauri L, Kereiakes DJ, Yeh RW, et al. Twelve or 30 months of dual antiplatelet therapy after drug-eluting stents. N Engl J Med. 2014;371:2155–66.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samin K. Sharma.

Ethics declarations

Conflict of Interest

Matthew I. Tomey declares that he has no conflict of interest.

Samin K. Sharma is the principal investigator for the Multi-Center Prospective Study to Evaluate Outcomes of the Moderate to Severely Calcified Coronary Lesions (MACE), sponsored by Cardiovascular Systems, Inc., the manufacturer of the Diamondback orbital atherectomy system. Dr. Sharma has also served on speakers bureaus for Angioscore (the manufacturer of Angiosculpt scoring balloon and a subsidiary of Spectranetics, the manufacturer of the CVX-300 excimer laser coronary angioplasty system), Boston Scientific (the manufacturer of the Flextome cutting balloon and Rotablator rotational atherectomy system), and The Medicines Company (manufacturer of Angiomax [bivalirudin]).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Interventional Cardiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomey, M.I., Sharma, S.K. Interventional Options for Coronary Artery Calcification. Curr Cardiol Rep 18, 12 (2016). https://doi.org/10.1007/s11886-015-0691-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-015-0691-8

Keywords

Navigation