Guedeney P, Claessen BE, Mehran R, Mintz GS, Liu M, Sorrentino S, Giustino G, Farhan S, Leon MB, Serruys PW, Smits PC, von Birgelen C, Ali ZA, Généreux P, Redfors B, Madhavan MV, Ben-Yehuda O, Stone GW. Coronary calcification and long-term outcomes according to drug-eluting stent generation. JACC Cardiovasc Interv. 2020;13(12):1417–28.
PubMed
Google Scholar
Copeland-Halperin RS, Baber U, Aquino M, Rajamanickam A, Roy S, Hasan C, Barman N, Kovacic JC, Moreno P, Krishnan P, Sweeny JM, Mehran R, Dangas G, Kini AS, Sharma SK. Prevalence, correlates, and impact of coronary calcification on adverse events following PCI with newer-generation DES: Findings from a large multiethnic registry. Catheter Cardiovasc Interv. 2018;91(5):859–66.
PubMed
Google Scholar
Sharma SK, Tomey MI, Teirstein PS, Kini AS, Reitman AB, Lee AC, Genereux P, Chambers JW, Grines CL, Himmelstein SI, Thompson CA, Meredith IT, Bhave A, Moses JW. North American expert review of rotational atherectomy. Circ Cardiovasc Interv. 2019;12(5):e007448.
PubMed
Google Scholar
Barbato E, Carrie D, Dardas P, Fajadet J, Gaul G, Haude M, Khashaba A, Koch K, Meyer-Gessner M, Palazuelos J, Reczuch K, Ribichini FL, Sharma S, Sipotz J, Sjogren I, Suetsch G, Szabo G, Valdes-Chavarri M, Vaquerizo B, Wijns W, Windecker S, de Belder A, Valgimigli M, Byrne RA, Colombo A, Di Mario C, Latib A, Hamm C. European expert consensus on rotational atherectomy. EuroIntervention. 2015;11(1):30–6.
PubMed
Google Scholar
Fujii K, Kubo T, Otake H, Nakazawa G, Sonoda S, Hibi K, Shinke T, Kobayashi Y, Ikari Y, Akasaka T. Expert consensus statement for quantitative measurement and morphological assessment of optical coherence tomography. Cardiovasc Interv Ther. 2020;35(1):13–8.
PubMed
Google Scholar
Saito Y, Kobayashi Y, Fujii K, Sonoda S, Tsujita K, Hibi K, Morino Y, Okura H, Ikari Y, Honye J. Clinical expert consensus document on standards for measurements and assessment of intravascular ultrasound from the Japanese association of cardiovascular intervention and therapeutics. Cardiovasc Interv Ther. 2020;35(1):1–12.
CAS
PubMed
Google Scholar
Sakakura K, Yamamoto K, Taniguchi Y, Tsurumaki Y, Momomura S-i, Fujita H. Intravascular ultrasound enhances the safety of rotational atherectomy. Cardiovasc Revas Med. 2018;19:286–91.
Google Scholar
Maejima N, Hibi K, Saka K, Akiyama E, Konishi M, Endo M, Iwahashi N, Tsukahara K, Kosuge M, Ebina T, Umemura S, Kimura K. Relationship between thickness of calcium on optical coherence tomography and crack formation after balloon dilatation in calcified plaque requiring rotational atherectomy. Circ J. 2016;80(6):1413–9.
PubMed
Google Scholar
Kobayashi N, Ito Y, Yamawaki M, Araki M, Obokata M, Sakamoto Y, Mori S, Tsutsumi M, Honda Y, Makino K, Shirai S, Mizusawa M, Hirano K. Clinical efficacy of optical coherence tomography-guided versus intravascular ultrasound-guided rotational atherectomy for calcified coronary lesion. EuroIntervention. 2019. https://doi.org/10.4244/eij-d-19-00725.
Article
PubMed
PubMed Central
Google Scholar
Sakakura K, Inohara T, Kohsaka S, Amano T, Uemura S, Ishii H, Kadota K, Nakamura M, Funayama H, Momomura FH. S-i, Incidence and determinants of complications in rotational atherectomy. Circ Cardiovasc Interv. 2016;9(11):e004278.
PubMed
Google Scholar
Kini A, Marmur JD, Duvvuri S, Dangas G, Choudhary S, Sharma SK. Rotational atherectomy: improved procedural outcome with evolution of technique and equipment. Single-center results of first 1000 patients. Catheter Cardiovasc Interv. 1999;46(3):305–11.
CAS
PubMed
Google Scholar
Mauri L, Reisman M, Buchbinder M, Popma JJ, Sharma SK, Cutlip DE, Ho KK, Prpic R, Zimetbaum PJ, Kuntz RE. Comparison of rotational atherectomy with conventional balloon angioplasty in the prevention of restenosis of small coronary arteries: results of the dilatation vs ablation revascularization trial targeting restenosis (DART). Am Heart J. 2003;145(5):847–54.
PubMed
Google Scholar
Endo H, Dohi T, Miyauchi K, Takahashi D, Funamizu T, Shitara J, Wada H, Doi S, Kato Y, Okai I, Iwata H, Okazaki S, Isoda K, Daida H. Clinical impact of complex percutaneous coronary intervention in patients with coronary artery disease. Cardiovasc Interv Ther. 2020;35(3):234–41.
CAS
PubMed
Google Scholar
Naito R, Sakakura K, Wada H, Funayama H, Sugawara Y, Kubo N, Ako J, Momomura S. Comparison of long-term clinical outcomes between sirolimus-eluting stents and paclitaxel-eluting stents following rotational atherectomy. Int Heart J. 2012;53(3):149–53.
CAS
PubMed
Google Scholar
Abdel-Wahab M, Richardt G, Joachim Buttner H, Toelg R, Geist V, Meinertz T, Schofer J, King L, Neumann FJ, Khattab AA. High-speed rotational atherectomy before paclitaxel-eluting stent implantation in complex calcified coronary lesions: the randomized ROTAXUS (Rotational Atherectomy Prior to Taxus Stent Treatment for Complex Native Coronary Artery Disease) trial. JACC Cardiovasc Interv. 2013;6(1):10–9.
PubMed
Google Scholar
Hachinohe D, Kashima Y, Kanno D, Kobayashi K, Sugie T, Kaneko U, Tadano Y, Watanabe T, Shitan H, Fujita T. Rotational atherectomy and new-generation drug-eluting stent implantation. Catheter Cardiovasc Interv. 2018;91(6):1026–34.
PubMed
Google Scholar
Dong H, Hachinohe D, Nie Z, Kashima Y, Luo J, Haraguchi T, Shitan H, Watanabe T, Tadano Y, Kaneko U, Sugie T, Kobayashi K, Kanno D, Enomoto M, Sato K, Fujita T. Reappraisal value of a modified rotational atherectomy technique in contemporary coronary angioplasty era. J Interv Cardiol. 2020;2020:1–8.
Google Scholar
Morofuji T, Kuramitsu S, Shinozaki T, Jinnouchi H, Sonoda S, Domei T, Hyodo M, Shirai S, Ando K. Clinical impact of calcified nodule in patients with heavily calcified lesions requiring rotational atherectomy. Catheter Cardiovasc Interv. 2020. https://doi.org/10.1002/ccd.28896.
Article
PubMed
PubMed Central
Google Scholar
Kuriyama N, Kobayashi Y, Yamaguchi M, Shibata Y. Usefulness of rotational atherectomy in preventing polymer damage of everolimus-eluting stent in calcified coronary artery. JACC Cardiovasc Interv. 2011;4(5):588–9.
PubMed
Google Scholar
Nagai T, Mizobuchi M, Funatsu A, Kobayashi T, Nakamura S. Acute and mid-term outcomes of drug-coated balloon following rotational atherectomy. Cardiovasc Interv Ther. 2020;35(3):242–9.
CAS
PubMed
Google Scholar
Ueno K, Morita N, Kojima Y, Takahashi H, Kawasaki M, Ito R, Kondo H, Minatoguchi S, Yoshida T, Hashimoto Y, Tatsumi T, Kitamura T. Safety and long-term efficacy of drug-coated balloon angioplasty following rotational atherectomy for severely calcified coronary lesions compared with new generation drug-eluting stents. J Interv Cardiol. 2019;2019:9094178.
PubMed
PubMed Central
Google Scholar
Shiraishi J, Kataoka E, Ozawa T, Shiraga A, Ikemura N, Matsubara Y, Nishimura T, Ito D, Kojima A, Kimura M, Kishita E, Nakagawa Y, Hyogo M, Sawada T. Angiographic and clinical outcomes after stent-less coronary intervention using rotational atherectomy and drug-coated balloon in patients with de novo lesions. Cardiovasc Revasc Med. 2020;21(5):647–53.
PubMed
Google Scholar
Motwani JG, Raymond RE, Franco I, Ellis SG, Whitlow PL. Effectiveness of rotational atherectomy of right coronary artery ostial stenosis. Am J Cardiol. 2000;85(5):563–7.
CAS
PubMed
Google Scholar
Sakakura K, Taniguchi Y, Yamamoto K, Wada H, Momomura SI, Fujita H. Association of excessive speed reduction with clinical factors during rotational atherectomy. Cardiovasc Revasc Med. 2020;21:314–9.
PubMed
Google Scholar
Azzalini L, Johal GS, Baber U, Bander J, Moreno PR, Bazi L, Kapur V, Barman N, Kini AS, Sharma SK. Outcomes of Impella-supported high-risk nonemergent percutaneous coronary intervention in a large single-center registry. Catheter Cardiovasc Interv. 2020. https://doi.org/10.1002/ccd.28931.
Article
PubMed
PubMed Central
Google Scholar
Sharma SK, Dangas G, Mehran R, Duvvuri S, Kini A, Cocke TP, Kakarala V, Cohen AM, Marmur JD, Ambrose JA. Risk factors for the development of slow flow during rotational coronary atherectomy. Am J Cardiol. 1997;80(2):219–22.
CAS
PubMed
Google Scholar
Sakakura K, Ako J, Wada H, Naito R, Arao K, Funayama H, Kubo N, Momomura S. Beta-blocker use is not associated with slow flow during rotational atherectomy. J Invasive Cardiol. 2012;24(8):379–84.
PubMed
PubMed Central
Google Scholar
LoMauro A, Aliverti A. Blood shift during cough: Negligible or significant? Front Physiol. 2018;9:501.
PubMed
PubMed Central
Google Scholar
Tanaka M, Yanagisawa R, Yashima F, Arai T, Watanabe Y, Naganuma T, Shirai S, Araki M, Tada N, Yamanaka F, Shimizu H, Fukuda K, Yamamoto M, Hayashida K. A novel technique to avoid perforation of the right ventricle by the temporary pacing lead during transcatheter aortic valve implantation. Cardiovasc Interv Ther. 2020. https://doi.org/10.1007/s12928-020-00676-0.
Article
PubMed
PubMed Central
Google Scholar
Von Sohsten R, Kopistansky C, Cohen M, Kussmaul WG 3rd. Cardiac tamponade in the "new device" era: evaluation of 6999 consecutive percutaneous coronary interventions. Am Heart J. 2000;140(2):279–83.
Google Scholar
Mitomo S, Demir OM, Latib A, Colombo A. Buddy-wire technique during rotational atherectomy: simple and effective solution to achieve strong back-up support. Catheter Cardiovasc Interv. 2019;93:436–9.
PubMed
Google Scholar
Boston_Scientific_Corporation. Rotablator and RotaWire: product document 2020, https://www.bostonscientific.com/jp-JP/products/atherectomy-system/Rotablator.html.
Safian RD, Feldman T, Muller DW, Mason D, Schreiber T, Haik B, Mooney M, O'Neill WW. Coronary angioplasty and Rotablator atherectomy trial (CARAT): immediate and late results of a prospective multicenter randomized trial. Catheter Cardiovasc Interv. 2001;53(2):213–20.
CAS
PubMed
Google Scholar
Boston_Scientific_Corporation. Rotablator, product document. 2016, https://www.bostonscientific.com/content/dam/Manuals/us/current-rev-en/91119961-01A_Rotablator_eDFU_en-US_s.pdf.
Reisman M, Shuman BJ, Dillard D, Fei R, Misser KH, Gordon LS, Harms V. Analysis of low-speed rotational atherectomy for the reduction of platelet aggregation. Cathet Cardiovasc Diagn. 1998;45(2):208–14.
CAS
PubMed
Google Scholar
Sakakura K, Funayama H, Taniguchi Y, Tsurumaki Y, Yamamoto K, Matsumoto M, Wada H, Momomura SI, Fujita H. The incidence of slow flow after rotational atherectomy of calcified coronary arteries: a randomized study of low speed versus high speed. Catheter Cardiovasc Interv. 2017;89:832–40.
PubMed
Google Scholar
Mizutani K, Hara M, Nakao K, Yamaguchi T, Okai T, Nomoto Y, Kajio K, Kaneno Y, Yamazaki T, Ehara S, Kamimori K, Izumiya Y, Yoshiyama M. Association between debulking area of rotational atherectomy and platform revolution speed-frequency domain optical coherence tomography analysis. Catheter Cardiovasc Interv. 2020;95(1):E1–e7.
PubMed
Google Scholar
Yamamoto T, Yada S, Matsuda Y, Otani H, Yoshikawa S, Sasaoka T, Hatano Y, Umemoto T, Ueshima D, Maejima Y, Hirao K, Ashikaga T. A novel rotablator technique (low-speed following high-speed rotational atherectomy) can achieve larger lumen gain: evaluation using optimal frequency domain imaging. J Interv Cardiol. 2019;2019:9282876.
PubMed
PubMed Central
Google Scholar
Kobayashi N, Yamawaki M, Hirano K, Araki M, Sakai T, Sakamoto Y, Mori S, Tsutsumi M, Sahara N, Nauchi M, Honda Y, Makino K, Shirai S, Mizusawa M, Sugizaki Y, Nakano T, Fukagawa T, Kishida T, Kozai Y, Setonaga Y, Goda S, Ito Y. Additional debulking efficacy of low-speed rotational atherectomy after high-speed rotational atherectomy for calcified coronary lesion. Int J Cardiovasc Imaging. 2020. https://doi.org/10.1007/s10554-020-01912-7.
Article
PubMed
Google Scholar
Jinnouchi H, Kuramitsu S, Shinozaki T, Kobayashi Y, Hiromasa T, Morinaga T, Mazaki T, Sakakura K, Soga Y, Hyodo M, Shirai S, Ando K. Two-year clinical outcomes of newer-generation drug-eluting stent implantation following rotational atherectomy for heavily calcified lesions. Circ J. 2015;79(9):1938–43.
CAS
PubMed
Google Scholar
Sakakura K, Momomura S, Fujita H. The RotaWire may be spinning in rotational atherectomy under the maximum rotational speed. Cardiovasc Interv Ther. 2019;34:182–3.
CAS
PubMed
Google Scholar
Warisawa T, Cook CM, Doi S, Kasahara M, Takai M, Akashi YJ. RotaWire fracturing due to spinning under the maximum rotational speed. Cardiovasc Interv Ther. 2019;34:373–4.
CAS
PubMed
Google Scholar
Sakakura K, Taniguchi Y, Yamamoto K, Tsukui T, Jinnouchi H, Fujita H. Excessive rotational speed may be associated with the transection of guidewires in rotational atherectomy. Am J Cardiol. 2020;132:172–3.
PubMed
Google Scholar
Foster-Smith K, Garratt KN, Holmes DR Jr. Guidewire transection during rotational coronary atherectomy due to guide catheter dislodgement and wire kinking. Cathet Cardiovasc Diagn. 1995;35(3):224–7.
CAS
PubMed
Google Scholar
Matsuo H, Watanabe S, Watanabe T, Warita S, Kojima T, Hirose T, Iwama M, Ono K, Takahashi H, Segawa T, Minatoguchi S, Fujiwara H. Prevention of no-reflow/slow-flow phenomenon during rotational atherectomy—a prospective randomized study comparing intracoronary continuous infusion of verapamil and nicorandil. Am Heart J. 2007;154(5):994.e1–6.
Google Scholar
Tsubokawa A, Ueda K, Sakamoto H, Iwase T, Tamaki S. Effect of intracoronary nicorandil administration on preventing no-reflow/slow flow phenomenon during rotational atherectomy. Circ J. 2002;66(12):1119–23.
CAS
PubMed
Google Scholar
Sakakura K, Taniguchi Y, Yamamoto K, Tsukui T, Seguchi M, Wada H, Momomura S-i, Fujita H. Comparison of complications with a 1.25-mm versus a 1.5-mm burr for severely calcified lesions that could not be crossed by an intravascular ultrasound catheter. Cardiovasc Interv Ther. 2020;35:227–33.
PubMed
Google Scholar
Sakakura K, Taniguchi Y, Yamamoto K, Tsukui T, Seguchi M, Wada H, Momomura S, Fujita H. Comparison of the incidence of slow flow after rotational aherectomy with IVUS-crossable versus IVUS-uncrossable calcified lesions. Sci Rep. 2020;10:11362. https://doi.org/10.1038/s41598-020-68361-z.
CAS
Article
PubMed
PubMed Central
Google Scholar
Kobayashi N, Ito Y, Yamawaki M, Araki M, Sakai T, Sakamoto Y, Mori S, Tsutsumi M, Nauchi M, Honda Y, Tokuda T, Makino K, Shirai S, Hirano K. Optical frequency-domain imaging findings to predict good stent expansion after rotational atherectomy for severely calcified coronary lesions. Int J Cardiovasc Imaging. 2018;34(6):867–74.
PubMed
Google Scholar
Kini A, Reich D, Marmur JD, Mitre CA, Sharma SK. Reduction in periprocedural enzyme elevation by abciximab after rotational atherectomy of type B2 lesions: results of the rota ReoPro randomized trial. Am Heart J. 2001;142(6):965–9.
CAS
PubMed
Google Scholar
Su Q, Li L, Naing KA, Sun Y. Safety and effectiveness of nitroprusside in preventing no-reflow during percutaneous coronary intervention: a systematic review. Cell Biochem Biophys. 2014;68(1):201–6.
CAS
PubMed
Google Scholar
Sani HD, Eshraghi A, Nezafati MH, Vojdanparast M, Shahri B, Nezafati P. Nicorandil versus nitroglycerin for symptomatic relief of angina in patients with slow coronary flow phenomenon: a randomized clinical trial. J Cardiovasc Pharmacol Ther. 2015;20(4):401–6.
CAS
PubMed
Google Scholar
Wei SJ, Luan FY, He DY, Xu F, Chen YG. Intracoronary administration of nicorandil-induced cardiac arrest during primary percutaneous coronary intervention: a case report. Medicine (Baltimore). 2019;98(7):e14473.
Google Scholar
Januszek R, Siudak Z, Dziewierz A, Dudek D, Bartus S. Predictors of in-hospital effectiveness and complications of rotational atherectomy (from the ORPKI Polish National Registry 2014–2016). Catheter Cardiovasc Interv. 2018;92:E278–87.
PubMed
Google Scholar
Kinnaird T, Kwok CS, Kontopantelis E, Ossei-Gerning N, Ludman P, deBelder M, Anderson R, Mamas MA. Incidence, determinants, and outcomes of coronary perforation during percutaneous coronary intervention in the United Kingdom between 2006 and 2013: an analysis of 527 121 cases from the british cardiovascular intervention society database. Circ Cardiovasc Interv. 2016;9(8):e003449.
PubMed
Google Scholar
Sakakura K, Taniguchi Y, Yamamoto K, Wada H, Momomura SI, Fujita H. When a Burr can not penetrate the calcified lesion, increasing burr size as well as decreasing Burr size can be a solution in rotational atherectomy. Int Heart J. 2017;58(2):279–82.
PubMed
Google Scholar
Yamamoto K, Sakakura K, Taniguchi Y, Tsurumaki Y, Wada H, Momomura S-i, Fujita H. Trapping balloon technique for removal of the burr in rotational atherectomy. Int Heart J. 2018;59:399–402.
PubMed
Google Scholar
Yamamoto S, Sakakura K, Funayama H, Wada H, Fujita H, Momomura S. Percutaneous coronary artery bypass for type 3 coronary perforation. JACC Cardiovasc Interv. 2015;8:1396–8.
PubMed
Google Scholar
Fujimoto Y, Tonoike N, Kobayashi Y. Successful delivery of polytetrafluoroethylene-covered stent using rapid exchange guide extension catheter. Cardiovasc Interv Ther. 2017;32(2):142–5.
CAS
PubMed
Google Scholar
Rodriguez-Santamarta M, Estevez-Loureiro R, Cuellas C, Benito-Gonzalez T, Perez de Prado A, Lopez-Benito M, Fernandez-Vazquez F. Double guide catheter technique for sealing an iatrogenic coronary perforation. Res Cardiovasc Med. 2016;5(2):e31388.
PubMed
PubMed Central
Google Scholar
Sakakura K, Ako J, Wada H, Naito R, Funayama H, Arao K, Kubo N, Momomura SI. Comparison of frequency of complications with on-label versus off-label use of rotational atherectomy. Am J Cardiol. 2012;110:498–501.
PubMed
Google Scholar
Kaneda H, Saito S, Hosokawa G, Tanaka S, Hiroe Y. Trapped Rotablator: kokesi phenomenon. Catheter Cardiovasc Interv. 2000;49(1):82–4 discussion 5.
CAS
PubMed
Google Scholar
Sakakura K, Ako J, Momomura S. Successful removal of an entrapped rotablation burr by extracting drive shaft sheath followed by balloon dilatation. Catheter Cardiovasc Interv. 2011;78(4):567–70.
PubMed
Google Scholar
Grise MA, Yeager MJ, Teirstein PS. A case of an entrapped rotational atherectomy burr. Catheter Cardiovasc Interv. 2002;57(1):31–3.
PubMed
Google Scholar
Sakakura K, Taniguchi Y, Tsukui T, Yamamoto K, Momomura SI, Fujita H. Successful removal of an entrapped rotational atherectomy burr using a soft guide extension catheter. JACC Cardiovasc Interv. 2017;10:e227–e22929.
PubMed
Google Scholar
Hyogo M, Inoue N, Nakamura R, Tokura T, Matsuo A, Inoue K, Tanaka T, Fujita H. Usefulness of conquest guidewire for retrieval of an entrapped rotablator burr. Catheter Cardiovasc Interv. 2004;63(4):469–72.
PubMed
Google Scholar
Tanaka Y, Saito S. Successful retrieval of a firmly stuck rotablator burr by using a modified STAR technique. Catheter Cardiovasc Interv. 2016;87(4):749–56.
PubMed
Google Scholar
Kimura M, Shiraishi J, Kohno Y. Successful retrieval of an entrapped Rotablator burr using 5 Fr guiding catheter. Catheter Cardiovasc Interv. 2011;78(4):558–64.
PubMed
Google Scholar
Kanazawa T, Kadota K, Mitsudo K. Successful rescue of stuck rotablator burr entrapment using a Kiwami straight catheter. Catheter Cardiovasc Interv. 2015;86:942–5.
PubMed
Google Scholar
Gambhir DS, Batra R, Singh S, Kaul UA, Arora R. Burr entrapment resulting in perforation of right coronary artery: an unreported complication of rotational atherectomy. Indian Heart J. 1999;51(3):307–9.
CAS
PubMed
PubMed Central
Google Scholar
Hashimoto S, Takahashi A, Yamada T, Mizuguchi Y, Taniguchi N, Nakajima S, Hata T. Usefulness of the twin guidewire method during retrieval of the broken tip of a microcatheter entrapped in a heavily calcified coronary artery. Cardiovasc Revasc Med. 2018;19(8s):28–30.
PubMed
Google Scholar
Lai CH, Su CS, Wang CY, Lee WL. Heavily calcified plaques in acutely angulated coronary segment: high risk features of rotablation resulting in Rotawire transection and coronary perforation. Int J Cardiol. 2015;182:112–4.
PubMed
Google Scholar
Woodfield SL, Lopez A, Heuser RR. Fracture of coronary guidewire during rotational atherectomy with coronary perforation and tamponade. Cathet Cardiovasc Diagn. 1998;44(2):220–3.
CAS
PubMed
Google Scholar
Hiraya D, Sato A, Hoshi T, Ieda M. Life-threatening perforation of the left main coronary artery by a rotablator burr delivered on a broken rotawire. Eur Heart J. 2020;41(27):2600.
PubMed
Google Scholar
Imamura S, Nishida K, Kawai K, Hamashige N, Kitaoka H. A rare case of Rotablator® driveshaft fracture and successful percutaneous retrieval of a trapped burr using a balloon and GuideLiner®. Cardiovasc Interv Ther. 2017;32(3):294–8.
PubMed
Google Scholar
Endo GJ, Hayase T, Fukushima Y, Shibata Y. Emergent coronary artery bypass grafting after a broken Rotablator drive-shaft. Interactive Cardiovasc Thoracic Surg. 2010;11(5):614–6.
Google Scholar
Ko E, Natsuaki M, Toyofuku M, Morimoto T, Matsumura Y, Oi M, Motohashi Y, Takahashi K, Kawase Y, Tanaka M, Kitada M, Yuzuki Y, Tamura T, Inoue K, Mitsudo K, Kimura T. Sirolimus-eluting stent implantation for ostial right coronary artery lesions: five-year outcomes from the j-Cypher registry. Cardiovasc Interv Ther. 2014;29(3):200–8.
CAS
PubMed
Google Scholar
Nakazawa G, Yazdani SK, Finn AV, Vorpahl M, Kolodgie FD, Virmani R. Pathological findings at bifurcation lesions: the impact of flow distribution on atherosclerosis and arterial healing after stent implantation. J Am Coll Cardiol. 2010;55(16):1679–87.
PubMed
Google Scholar
Fuku Y, Kadota K, Toyofuku M, Morimoto T, Ohya M, Higami H, Yamaji K, Muranishi H, Yamaji Y, Nishida K, Furukawa D, Tada T, Ko E, Ando K, Sakamoto H, Tamura T, Kawai K, Kimura T. Long-term outcomes of drug-eluting stent implantation after rotational atherectomy for left main coronary artery bifurcation lesions. Am J Cardiol. 2019;123(11):1796–805.
PubMed
Google Scholar
Okamura A, Ito H, Fujii K. Rotational atherectomy is useful to treat restenosis lesions due to crushing of a sirolimus-eluting stent implanted in severely calcified lesions: experimental study and initial clinical experience. J Invasive Cardiol. 2009;21(10):E191–6.
PubMed
PubMed Central
Google Scholar
Whiteside HL, Nagabandi A, Kapoor D. Safety and Efficacy of Stentablation with rotational atherectomy for the management of underexpanded and undilatable coronary stents. Cardiovasc Revasc Med. 2019;20(11):985–9.
PubMed
Google Scholar
Hachinohe D, Kashima Y, Hirata K, Kanno D, Kobayashi K, Kaneko U, Sugie T, Tadano Y, Watanabe T, Shitan H, Haraguchi T, Enomoto M, Sato K, Fujita T. Treatment for in-stent restenosis requiring rotational atherectomy. J Interv Cardiol. 2018;31(6):747–54.
PubMed
Google Scholar
Edes IF, Ruzsa Z, Szabo G, Lux A, Geller L, Molnar L, Nowotta F, Hajas A, Szilveszter B, Becker D, Merkely B. Rotational atherectomy of undilatable coronary stents: stentablation, a clinical perspective and recommendation. EuroIntervention. 2016;12(5):e632–5.
PubMed
Google Scholar
Tovar Forero MN, Van Mieghem NM, Daemen J. Stent underexpansion due to heavy coronary calcification resistant to rotational atherectomy: a case for coronary lithoplasty? Catheter Cardiovasc Interv. 2019. https://doi.org/10.1002/ccd.28641.
Article
PubMed
PubMed Central
Google Scholar
Iannaccone M, Barbero U, D’Ascenzo F, Latib A, Pennacchi M, Rossi ML, Ugo F, Meliga E, Kawamoto H, Moretti C, Ielasi A, Garbo R, Colombo A, Sardella G, Boccuzzi GG. Rotational atherectomy in very long lesions: results for the ROTATE registry. Catheter Cardiovasc Interv. 2016;88(6):E164–72.
PubMed
Google Scholar
Sakakura K, Taniguchi Y, Matsumoto M, Wada H, Momomura SI, Fujita H. How should we perform rotational atherectomy to an angulated calcified lesion? Int Heart J. 2016;57:376–9.
CAS
PubMed
Google Scholar
Sakakura K, Taniguchi Y, Yamamoto K, Wada H, Momomura SI, Fujita H. Halfway rotational atherectomy for calcified lesions: comparison with conventional rotational atherectomy in a propensity-score matched analysis. PLoS ONE. 2019;14(7):e0219289.
CAS
PubMed
PubMed Central
Google Scholar
Taniguchi Y, Sakakura K, Mukai Y, Yamamoto K, Momomura S-i, Fujita H. Intentional switch between 15-mm and 125-mm burrs along with switch between rotawire floppy and extra-support for an uncrossable calcified coronary lesion. J Cardiol Cases. 2019;19:200–3.
PubMed
PubMed Central
Google Scholar