Skip to main content
Log in

Development of Bt rice potential for yellow stem borer control

  • Review Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

Rice (Oryza sativa L.) production is always threatened by biotic and abiotic stresses. Both stresses can reduce rice productivity and quality. Yellow stem borer (YSB; Scirpophaga incertulas Walker) is one of the biotic stresses and is reported as the most destructive pest of tropical rice insects. The application of pesticides is less effective since the insect larvae live and feed inside the stem, thus inhibiting pesticides to reach the larvae. Planting YSB-resistant cultivars is a good strategy besides environmentally friendly. However, no sufficient level of resistance to YSB has been identified among rice germplasm collection, making the use of conventional breeding methods is difficult. Bacillus thuringiensis (Bt) is a Gram-positive bacterium produces insecticidal proteins, Cry toxins that are toxic to YSB. The introduction of cry genes from Bt into rice plants by using genetic engineering has been widely and successfully carried the out. A number of strategies have been conducted to increase the expression level and to prolong the effectiveness of Bt toxins in transgenic rice, including plant codon usage-optimized genes, the use of strong promoters and wound-inducible promoters and gene stacking. Insect bioassays under laboratory, greenhouse and field conditions showed that transgenic rice plants harboring and expressing cry genes are highly resistant to YSB compared to the original cultivars from which transgenic plants were developed. Thus, the development of transgenic rice plants harboring and expressing cry genes from Bt is a good strategy to build plant resistance against YSB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

(Source: Estiati et al. 2020)

Fig. 4

(Source: Estiati et al. 2020)

Similar content being viewed by others

References

  • Bano-Maqbool S, Husnain T, Riazuddin S, Masson L, Christou P (1998) Effective control of yellow stem borer and rice leaf folder in transgenic indica rice varieties Basmati 370 and M7 using the novel δ-endotoxin cry2A Bacillus thuringiensis gene. Mol Breed 4:501–507

    Google Scholar 

  • Bashir K, Husnain T, Fatima T, Latif Z, Mehdi SA, Riazuddin S (2004) Field evaluation and risk assessment of transgenic indica basmati rice. Mol Breed 13:301–312

    CAS  Google Scholar 

  • Bashir K, Hussain T, Fatima T, Riaz N, Makhdoom R, Riazuddin S (2005) Novel indica basmati line (B-370) expressing two unrelated genes of Bacillus thuringiensis is highly resistant to two lepidopteran insects in the field. Crop Prot 24:870–879

    CAS  Google Scholar 

  • Bravo A, Soberón M (2008) How to cope with insect resistance to Bt toxins? Trends Biotechnol 26(10):573–579

    CAS  Google Scholar 

  • Bravo A, Gill SS, Soberón M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49(4):423–435

    CAS  Google Scholar 

  • Bravo A, Gómez I, Porta H, Garcia- Gómez BI, Rodriguez-Almazan C, Pardo L, Soberón M (2012) Evolution of Bacillus thuringiensis Cry toxins insecticidal activity. Microb Biotechnol 6:17–26

    Google Scholar 

  • Bravo A, de Castro DLM, Sánchez J, Cantón PE, Mendoza G, Gómez I, Pacheco S, Garcia- Gómez BI, Onofre J, Ocelotl J, Soberón M (2015) Mechanism of action of Bacillus thuringiensis insecticidal toxins and their use in the control of insect pests. In: Alouf J, Ladant D, Popoff MR (eds) The comprehensive sourcebook of bacterial protein toxins, 4th edn. Academic Press, Oxford, pp 858–873. https://doi.org/10.1016/B978-0-12-800188-2.00030-6

    Chapter  Google Scholar 

  • Bravo A, Gill SS, Soberón M (2018) Bacillus thuringiensis: mechanisms and use. Refer Mod Life Sci. https://doi.org/10.1016/b978-0-12-809633-8.04071-1

    Article  Google Scholar 

  • Breitler JC, Marfà V, Royer M, Meynard D, Vassal JM, Vercambre B, Frutos R, Messeguer J, Gabarra R, Guiderdoni E (2000) Expression of Bacillus thuringiensis cry1B synthetic gene protecs Mediterranean rice against the striped stem borer. Plant Cell Rep 19:1195–1202

    CAS  Google Scholar 

  • Breitler JC, Cordero MJ, Royer M, Meynard D, Segundo BS, Guiderdoni E (2001) The −  689/+ 197 region of the maize proteinase inhibitor gene directs high level, wound-inducible expression of the cry1B gene which protects transgenic rice plants from stem borer attack. Mol. Breed 7:259–274

    CAS  Google Scholar 

  • Breitler JC, Vassal JM, del Mar Catala M, Meynard D, Marfà V, Melé E, Royer M, Murillo I, Segundo BS, Guiderdoni E, Messeguer J (2004) Bt rice harboring cry genes controlled by a constitutive or wound-inducible promoter: protection and transgene expression under Meditterranean field conditions. Plant Biotechnol J 2:417–430

    CAS  Google Scholar 

  • Chakraborty M, Reddy PS, Mustafa G, Rajesh G, Narasu VML, Udayasuriyan V, Rana D (2016) Transgenic rice expressing the cry2AX1 gene confers resistance to multiple lepidopteran pests. Transgen Res. https://doi.org/10.1007/s11248-016-9954-4

    Article  Google Scholar 

  • Chatterjee S, Mondal P (2014) Management of rice yellow stem borer, Scirpophaga incertulas Walker using some biorational insecticides. J Biopest 7:143–147

    CAS  Google Scholar 

  • Chen H, Tang W, Xu C, Li X, Lin Y, Zhang Q (2005) Transgenic indica rice plants harboring a synthetic cry2A* gene of Bacillus thuringiensis exhibit enhanced resistance against lepidopteran rice pests. Theor Appl Genet 111:1330–1337

    CAS  Google Scholar 

  • Cheng X, Sardana R, Kaplan H, Altosaar I (1998) Agrobacterium-transformed rice plants expressing synthetic cryIA(b) and cryIA(c) genes are highly toxic to striped stem borer and yellow stem borer. Proc Natl Acad Sci 95:2767–2772

    CAS  Google Scholar 

  • Cohen MB, Chen M, Bentur JS, Heon KL, Ye G (2008) Bt rice in Asia: potential benefits, impact, and sustainability. In: Romeis J, Shelton AM, Kennedy GG (eds) Integration of insect-resistant genetically modified crops within IPM programs. Springer, New York, pp 223–248

    Google Scholar 

  • Datta K, Baisakh N, Thet KM, Tu J, Datta SK (2002) Pyramiding transgenes for multiple resistance in rice against bacterial blight, yellow stem borer and sheath blight. Theor Appl Genet 106:1–8

    CAS  Google Scholar 

  • Deka S, Barthakur S (2010) Overview on current status of biotechnological interventions of yellow stem borer Scirpophaga incertulas (Lepidoptera: Crambidae) resistance in rice. Biotechnol Adv 28:70–81

    CAS  Google Scholar 

  • Devasena N, Soundararajan RP, Reuolin SJ, Jeyaprakash P, Robin S (2018) Evaluation opf rice genotypes for resistance to yellow stem borer, Scirpophaga incertulas (Walker) through artificial screening methods. J Entomol Zool Stud 6(1):874–878

    Google Scholar 

  • Estiati A, Astuti D, Nurhasanah AN, Nugroho S (2020) In vitro and in planta efficacy studies on T6 generation of transgenic Rojolele rice lines against rice yellow stem borer (Scirpophaga incertulas Walker). IOP Conf Ser Earth Environ Sci 439:012054

    Google Scholar 

  • Frutos R, Rang C, Royer M (1999) Managing insect resistance to plants producing Bacillus thuringiensis toxins. Crit Rev Biotechnol 19(3):227–276

    CAS  Google Scholar 

  • Gao J, Zhang Y, Zhao Q, Lin C, Xu X, Shen Z (2011) Transgenic rice expressing a fusion protein of Cry1Ab and Cry9Aa confers resistance to a broad spectrum of Lepidopteran pests. Crop Sci 51:2535–2543

    CAS  Google Scholar 

  • Ghareyazie B, Alinia F, Menguito CA, Rubia LG, de Palma JM, Liwanag EA, Cohen MB, Khush GS, Bennett J (1997) Enhanced resistance to two stem borer in an aromatic rice containing a synthetic cry1A(b) gene. Mol Breed 3:401–414

    CAS  Google Scholar 

  • Ho NH, Baisakh N, Oliva N, Datta K, Frutos R, Datta SK (2006) Translational fusion hybrid Bt genes confer resistance against yellow stem borer in transgenic elite Vietnamese rice (Oryza sativa L.) cultivars. Crop Sci 46:781–789

    CAS  Google Scholar 

  • Ho GTT, Le CV, Nguyen TH, Ueno T, Nguyen DV (2013) Incidence of yellow stem borer Scirpophaga incertulas Walker in Haiphong, Vietnam and control efficacy of egg mass removal and insecticides. J Fac Agric Kyushu Univ 58(2):301–306

    Google Scholar 

  • Hoa TTC, Nhu HTH (2011) Development of transgenic rice lines resistant to insect pests using Agrobacterium tumefaciens-mediated transformation and mannose selection system. Omonrice 18:1–10

    Google Scholar 

  • Höfte H, Whiteley HR (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 53(2):242–255

    Google Scholar 

  • International Rice Research Institute (IRRI) (2013) Standard evaluation system for rice, 5th edn. International Rice Research Institute (IRRI), Manila, p 55

    Google Scholar 

  • Kubo M, Purevdorj M (2004) The future of rice production and consumption. J Food Distrib Res 35(1):128–142

    Google Scholar 

  • Kumar S, Chandra A, Pandey KC (2008) Bacillus thuringiensis (Bt) transgenic crop: an environment friendly insect-pest management strategy. J Environ Biol 29(5):641–653

    CAS  Google Scholar 

  • Kumar S, Arul L, Talwar D (2010) Generation of marker- free Bt transgenic indica rice and evaluation of its yellow stem borer resistance. J Appl Genet 51(3):243–257

    CAS  Google Scholar 

  • Liu Q, Hallerman E, Peng Y, Li Y (2016) Development of Bt rice and Bt maize in China and their efficacy in target pest control. Int J Mol Sci 17:1561. https://doi.org/10.3390/ijms17101561

    Article  CAS  Google Scholar 

  • Manikandan R, Balakhrishnan N, Sudhakar D, Udayasuriyan V (2016) Transgenic rice plants expressing synthetic cry2AX1 gene exhibits resistance to rice leaffolder (Cnaphalocrosis medinalis). 3 Biotech 6:10. https://doi.org/10.1007/s13205-015-0315-4

    Article  CAS  Google Scholar 

  • Marfà V, Melé E, Vassal JM, Messeguer J (2002) In vitro insect feeding bioassay to determine the resistance of transgenic rice plants transformed with insect resistance genes against striped stem borer (Chilo suppressalis). Vitro Cell Dev Biol Plant 38(4):310–315

    Google Scholar 

  • Nayak P, Basu D, Das S, Basu A, Ghosh D, Ramakrishnan NA, Ghosh M, Sen SK (1997) Transgenic elite indica rice plants expressing CryIAc δ-endotoxin of Bacillus thuringiensis are resistant against yellow stem borer (Scirpophaga insertulas). Proc Natl Acad Sci 94:2111–2116

    CAS  Google Scholar 

  • Palma L, Munoz D, Berry C, Murillo J, Caballero P (2014) Bacillus thuringiensis Toxins: an overview of their biocidal activity. Toxins 6:3296–3325. https://doi.org/10.3390/toxins6123296

    Article  CAS  Google Scholar 

  • Pardo-López L, Soberón M, Bravo A (2013) Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiol Rev 37:3–22

    Google Scholar 

  • Pathak MD, Khan ZR (1994) Insect pests of rice. International Rice Research Institute (IRRI), Los Banos, p 89

    Google Scholar 

  • Purevdorj M, Kubo M (2005) The future of rice production, consumption and seaborne trade: synthetic prediction method. J Food Distrib Res 36(1):250–259

    Google Scholar 

  • Ramesh S, Nagadhara D, Reddy VD, Rao KV (2004) Production of transgenic indica rice resistant to yellow stem borer and sap-sucking insects, using super-binary vectors of Agrobacterium tumefaciens. Plant Sci 166:1077–1085

    CAS  Google Scholar 

  • Renuka P, Madhav MS, Padmakumari AP, Barbadikar KM, Mangrauthia SK, Rao KVS, Marla SS, Babu VR (2017) Genes genomes. Genetics 7:3031–3045

    CAS  Google Scholar 

  • Riudavets J, Gabarra R, Pons MJ, Messeguer J (2006) Effect of transgenic Bt rice on the survival of three nontarget stored product insect pests. Environ Entomol 35(5):1432–1438

    Google Scholar 

  • Sanchis V, Bourguet D (2008) Bacillus thuringiensis: applications in agriculture and insect resistance management. A review. Agron Sustain Dev 28:11–20

    Google Scholar 

  • Schünemann R, Knaak N, Fiuza LM (2014) Mode of action and specificity of Bacillus thuringiensis toxins in the control of caterpillars and stink bugs in soybean culture. ISRN Microbiol. https://doi.org/10.1155/2014/135675

    Article  Google Scholar 

  • Sharma HC, Sharma KK, Seetharama N, Ortiz R (2000) Prospects for using transgenic resistance to insects in crop improvement. EJB Electron J Biotechnol 3(2):76–95

    Google Scholar 

  • Tabashnik BE, Zhang M, Fabrick JA, Wu Y, Gao M et al (2015) Dual mode of action of Bt proteins: prototoxin efficacy against resistant insects. Sci Rep 5:15107. https://doi.org/10.1038/srep15107

    Article  CAS  Google Scholar 

  • Tamayo MC, Rufat M, Bravo JM, Segundo BS (2000) Accumulation of a maize proteinase inhibitor in response to wounding and insect feeding, and characterization of its activity toward digestive proteinases of Spodoptera littoralis larvae. Planta 211:62–71

    CAS  Google Scholar 

  • Tang W, Chen H, Xu C, Li X, Lin Y, Zhang Q (2006) Development of insect-resistant transgenic indica rice with a synthetic cry1C* gene. Mol Breed 18:1–10

    CAS  Google Scholar 

  • Tu J, Zhang G, Datta K, Xu C, He Y, Zhang Q, Khush GS, Datta SK (2000) Field performance of transgenic elite commercial hybrid rice expressing Bacillus thuringiensis δ-endotoxin. Nat Biotechnol 18:1101–1104

    CAS  Google Scholar 

  • Wu C, Fan Y, Zhang C, Oliva N, Datta SK (1997) Transgenic fertile japonica rice plants expressing a modified cry1A(b) gene resistant to yellow stem borer. Plant Cell Rep 17:129–132

    CAS  Google Scholar 

  • Ye G, Tu J, Hu C, Datta K, Datta SK (2001) Transgenic IR72 with fused Bt gene cry1Ab/cry1Ac from Bacillus thuringiensis is resistant against four Lepidopteran species under field conditions. Plant Biotechnol. 18(2):125–133

    CAS  Google Scholar 

  • Ye R, Huang H, Yang Z, Chen T, Liu L, Li X, Chen H, Lin Y (2009) Development of insect-resistant transgenic rice with Cry1C*-free endosperm. Pest Manag Sci 65:1015–1020

    CAS  Google Scholar 

  • Yong-Mei J, Rui M, Zhijing Y, Ling W, Wenzhu J, Xiufeng L (2014) Development of lepidopteran pest-resistant transgenic japonica rice harboring a synthetic cry2A* gene. J Integr Agric. https://doi.org/10.1016/S2095-3119(14)60897-2

    Article  Google Scholar 

  • Zhao Q, Liu M, Tan M, Gao J, Shen Z (2014) Expression of cry1Ab and cry2Ab by a polycistronic transgene with a self-cleavage peptide in rice. PloS One 9(10). http://www.plosone.org

  • Zhou J, Yang Y, Wang X, Yu F, Yu C, Chen J, Cheng Y, Yan C (2013) Enhanced transgene expression in rice following selection controlled by weak promoters. BMC Biotechnol 13:29. http://www.biomedcentral.com/1472-6750/13/29

  • Zhou J, Xiao K, Wei B, Wang Z, Tian Y, Tian Y, Song Q (2014) Bioaccumulation of Cry1Ab protein from an herbivore reduces anti-oxidant enzyme activities in two spider species. PloS One 9(1). http://www.plosone.org

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy Estiati.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Estiati, A. Development of Bt rice potential for yellow stem borer control. J. Crop Sci. Biotechnol. 23, 395–403 (2020). https://doi.org/10.1007/s12892-020-00025-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-020-00025-w

Keywords

Navigation