Skip to main content
Log in

Cytogenetic Diversity of Korean Hexaploid Wheat (Triticum aestivum L.) with Simple Sequence Repeats (SSRs) by Fluorescence In Situ Hybridization

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

Chromosomes of Korean hexaploid wheat were investigated to compare the chromosomal karyotype for cytogenetic diversity. Chromosomal karyotyping was done with in situ hybridization using two types of simple sequence repeats (SSR)s, (AAG)5 and (AAC)5 labeled with tetramethyl-rhodamine-5-dUTP and fluorescein-12-dUPT as a fluorescence, respectively. The two SSRs as cytogenetic markers revealed that the cytogenetic characteristics of the wheat chromosomes were remarkably a B genome. In this study, the chromosomal karyotype of Keumkang, a Korean hexaploid wheat cultivar, was the A, B, and D genomes used as a cytogenetic reference. The expressed signals from the two SSRs showed a difference in the chromosomal karyotype of chromosome 1B among the Korean hexaploid wheat. The distribution pattern and the degree of condensation for the (AAG)5 and (AAC)5 signals on the short arm of chromosome 1B were different in the Korean hexaploid wheat shown in descending order: Keumkang > Joeun > Johan > Olgeuru. Olgeuru had a lower level of distribution and condensation for the two SSRs signals compared to the other Korean hexaploid wheat. In the A genome, chromosome 7A showed an unbalanced expression of the (AAG)5 signal on the distal region of the short and long arms in several Korean hexaploid wheat while Joeun, a Korean hexaploid wheat, showed a definite (AAG)5 signal on the distal region of each arm of chromosome 7A. Among the Korean hexaploid wheat, Shinmichal1, a Korean hexaploid waxy wheat, had a chromosome with a unique expression pattern for (AAG)5 and (AAC)5 compared the other Korean hexaploid wheat. Those cytogenetic differences identified in this study are useful as an indicator to improve the cytogenetic diversity in the Korean wheat breeding program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arumuganathan K, Earle ED. 1991. Nuclear DNA content of some important plant species, Plant Mol. Bio. Rep. 9: 208–218

    CAS  Google Scholar 

  • Badaeva ED, Keilwagen J, Knüpffer H, WaBermann L, Dedkova OS, Mitrofanova OP, Kovaleva ON, Liapunova OA, Pukhalskiy VA, Őzkan H, Graner A, Willcox G, Kilian B. 2015. Chromosomal passports provide new insights into diffusion of emmer wheat. PLOS ONE 10: e0128556

    Google Scholar 

  • Choulet F, Wicker T, Rustenholz C, Paux E, Salse J, Leroy P, Schlub S, Le Paslier MC, Magdelenat G, Gonthier C, Couloux A, Budak H, Breen J, Pumphrey M, Liu S, Kong X, Jia J, Gut M, Brunel D, Anderson JA, Gill BS, Appels R, Keller B, Feuillet C. 2010. Megabase level sequencing reveals contrasted organization and evolution patterns of the wheat gene and transposable element spaces. The Plant Cell 22: 1686–1701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuadrado A, Cardoso A, Jouve N. 2008. Physical organization of simple sequence repeats (SSRs) in Triticeae: structural, functional and evolutionary implications. Cytogenet. Genome Res. 120: 210–219

    Article  CAS  PubMed  Google Scholar 

  • Cuadrado A, Schwarzacher T. 1998. The chromosomal organization of simple sequence repeats in wheat and rye genomes. Chromosoma 107: 587–594

    Article  CAS  PubMed  Google Scholar 

  • Cuadrado A, Schwarzacher T, Jouve N. 2000. Identification of different chromatin classes in wheat using in situ hybridization with simple sequence repeat oligonucleotides. Theor. Appl. Genet. 101: 711–717

    Article  CAS  Google Scholar 

  • Dvorák J, McGuire PE. Nonstructural chromosome differentiation among wheat cultivars, with special reference to differentiation of chromosomes in related species. Genetics 1981: 391–414

    Google Scholar 

  • Gill BS, Friebe B, Endo TR. 1991. Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome 34: 830–839

    Article  Google Scholar 

  • Gill BS, Kimber G. 1974. Giemsa C–banding and the evolution of wheat. Proc. Natl. Acad. Sci. 71: 4086–4090

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Sirikhachornkit A, Faris JD, Su X, Gill BS, Haselkorn R, Gornicki P. 2002a. Phylogenetic analysis of the acetyl–CoA carboxylase and 3–phosphoglycerate kinase loci in wheat and other grasses. Plant Mol. Biol. 48: 805–820

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Sirikhachornkit A, Su X, Faris J, Gill B, Haselkorn R, Gornicki P. 2002b. Genes encoding plastid acetyl–CoA carboxylase and 3–phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc. Natl. Acad. Sci. 99: 8133–8138

    Article  CAS  PubMed  Google Scholar 

  • Kohno K, Takahashi H, Endo TR, Matsuo H, Shiwaku K, Morita E. 2016. Characterization of a hypoallergenic wheat line lacking ω–5 gliadin. Allergo. Int. 65: 400–405

    Article  CAS  Google Scholar 

  • McFadden ES, Sears ER. 1946. The origin of Triticum spelta and its free threshing hexaploid relatives. J. Hered. 37: 81–107

    Article  PubMed  Google Scholar 

  • Mirzaghaderi G, Houben A, Badaeva ED. 2014. Molecularcytogenetic analysis of Aegilops triuncialis and identification of its chromosomes in the background of wheat. Mol. Cytogenetics 7: 91

    Article  CAS  Google Scholar 

  • Naranjo T, Roca P, Goicoechea PG, Giraldez R. 1987. Arm homology of wheat and rye chromosomes. Genome 29: 873–882

    Article  Google Scholar 

  • Sourdille P, Tavaud M, Charmet G, Bernard M. 2001. Transferability of wheat microsatellites to diploid Triticeae species carrying the A, B and D genomes. Theor. Appl. Genet. 103: 346–352

    Article  CAS  Google Scholar 

  • Talbert LE, Blake NK, Storlie EW, Lavin M. 1009. Variability in wheat based on low–copy DNA sequence comparisons. Genome 38: 951–957

    Article  Google Scholar 

  • Tang Z, Li M, Chen L, Wang Y, Ren Z, Fu S. 2014. New types of wheat chromosomal structural variations in derivatives of wheat–rye hybrids. PLOS ONE 9: e110282

    Google Scholar 

  • Zimin AV, Puiu D, Hall R, Kingan S, Clavijo BJ, Salzberg SL. 2017. The first near–complete assembly of the hexaploid bread wheat genome, Triticum aestivum. GigaSci. 6: 1–7

    CAS  Google Scholar 

  • Zhang H, Li G, Li D, Gao D, Zhang J, Yang E, Yang Z. 2015. Molecular and cytogenetic characterization of new wheat–Dasypyrum breviaristatum derivatives with post–harvest re–growth habit. Genes 6: 1242–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng JS, Sun CZ, Zhang SN, Hou XI, Bonnema G. 2016. Cytogenetic diversity of simple sequences repeats in morphotypes of Brassica rapa ssp. chinensis. Frontiers in Plant Sci. 7: 1049

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changsoo Kim or Chon-Sik Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, SW., Kang, SW., Kang, TG. et al. Cytogenetic Diversity of Korean Hexaploid Wheat (Triticum aestivum L.) with Simple Sequence Repeats (SSRs) by Fluorescence In Situ Hybridization. J. Crop Sci. Biotechnol. 21, 491–497 (2018). https://doi.org/10.1007/s12892-018-0245-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-018-0245-0

Key words

Navigation