Skip to main content
Log in

The effect of carbon nanotubes on the seed germination and seedling growth of four vegetable species

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) can change the morphological and physiological characteristics of plant cells. Laboratory and greenhouse studies were conducted to study the effect of CNTs on the germination and seedling growth of tomato (Lycopersicum esculentum Mill. cv. ‘Falcato’), onion (Allium cepa L. cv. ‘Yellow Sweet Spanish’), turnip (Brassica rapa L. cv. ‘Toria’) and radish (Raphanus sativus L. cv. ‘Small radish’). Seeds were germinated in four concentrations of CNTs (0, 10, 20 and 40 mg L-1) in Petri dishes under laboratory conditions. The same concentrations were used in a greenhouse to study the response of seedling growth to CNTs. To evaluate the effect of CNTs on germination and growth, germination percentage (GP), germination rate (GR), seedling length, seedling fresh and dry weight and mean germination time (MGT) were measured. Scanning electron microscopy (SEM) was used to confirm the presence of CNTs. CNTs at 10–40 mg L-1 improved tomato and onion germination more than for radish and turnip, the highest GP in tomato and onion being 8 and 95%, respectively. In radish, the control showed the highest GP (96%) under laboratory conditions. CNTs at 40 mg L-1 had a deleterious and toxic effect on onion and radish seed germination. In the greenhouse experiment, the fresh weight of radish seedlings decreased as the CNT concentration increased. The dry weight of tomato and radish shoots increased following the application of all concentrations (10–40 mg L-1) of CNTs. CNTs did not alter turnip germination and growth. SEM revealed that the effectiveness of CNTs may depend on the plant species and on the distribution of CNTs on the testa and root surface. CNTs thus provide a viable and important new technique to improve seed germination and selective seedling growth-related characteristics, although the benefit-toxic balance needs to be tested for other horticultural crops and other (higher) concentrations of CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bocian S, Hotubowicz R. 2008. Effect of different ways of priming tomato (Lycopersicon esculentum Mill.) seeds on their quality. Pol. J. Nat. Sci. 23: 729–739

    Article  Google Scholar 

  • Cañas J, Long E, Nations M, Vadan SH, Dai R, Luo L, Ambikapathi M, Lee R, Olszyk D. 2008. Effects of functionalized and non-functionalized single-walled carbon nanotubes on root elongation of select crop species. Environ. Toxicol. Chem. 27: 1922–1931

    Article  PubMed  Google Scholar 

  • Castiglione MR, Cremonini R. 2009. Nanoparticles and higher plants. Caryologia 62: 161–165

    Article  Google Scholar 

  • Chai MW, Shi FC, Li RL, Liu LM, Liu Y, Liu FC. 2013. Interactive effects of cadmium and carbon nanotubes on the growth and metal accumulation in a halophyte Spartina alterniflora (Poaceae). Plant Growth Regul. 71: 171–179

    Article  CAS  Google Scholar 

  • Cho SK, Seo HY, Oh YJ, Shim KB, Choi KG, Lee SC. 2006. Effect of priming conditions on enhancing germination of onion (Allium cepa L.) seeds. Kor. J. Crop Sci. 51: 191–198

    Google Scholar 

  • Haghighi M, Pourkhaloee B. 2013. Nanoparticles in agricultural soils: their risks and benefits for seed germination. Minerva Biotechnologica 25: 123–132

    Google Scholar 

  • Hamond EC, Bridgers K, Berry D. 1986. Germination, growth rates, and electron microscope analysis of tomato seeds flown on the LDEF. Radiation Measurements 26: 851–861

    Article  Google Scholar 

  • Hartman HT, Kester D, Davies FT, Geneve RL. 2002. Plant Propagation: Principles and Practices. Pearson Education. 7th edition. 880 p

    Google Scholar 

  • Jeong YO, Kim JC, Cho JL. 2000. Effects of seed priming of carrot, lettuce, onion and Welsh onion seeds as affected by germination temperature. Kor. J. Hortic. Sci. Technol. 18: 321–326

    Google Scholar 

  • Jiang YM, Hua ZT, Zhao YQ, Liu QD, Wang F, Zhang Q. 2014. The effect of carbon nanotubes on rice seed germination and root growth. In T-C Zhang, ed, Proceedings of the 2012 International Conference on Applied Biotechnology, Lecture Notes in Electrical Engineering 250, Springer-Verlag, Berlin, pp 1207–1212

    Chapter  Google Scholar 

  • Jones CG (2012) Scanning electron microscopy: preparation and imaging for SEM. Methods Mol. Biol. 915: 1–20

    Article  PubMed  Google Scholar 

  • Kaymak HC, Guvence I, Yarali F, Donmez MF. 2009. The effects of bio-priming with PGPR on germination of radish (Raphanus sativus L.) seeds under saline conditions. Turk. J. Agric. Forest. 33: 173–179

    CAS  Google Scholar 

  • Lin C, Fugetsu B, Su Y, Watari F. 2009. Studies on toxicity of multi-walled carbon nanotubes on Arabidopsis T87 suspension cells. J. Hazard. Mater. 170: 578–583

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Chen B, Wang Q, Shi X, Xiao Z, Lin J, Fang X. 2009. Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett. 9: 1007–1010

    Article  CAS  PubMed  Google Scholar 

  • Maleki N, Safavi A, Doroodm MM. 2011a. Comparative investigation of chemical vapor deposition of palladium nanoparticles on different carbon substrates. Fuller. Nanotub. Carbon Nanostruct. 20: 1–16

    Google Scholar 

  • Maleki N, Safavi A, Doroodmand MM. 2011b. Fabrication of a room temperature hydrogen sensor based on thin film of single-walled carbon nanotubes doped with palladium nanoparticles. J. Exp. Nanosci. 22: 1–14

    Google Scholar 

  • Mohammadi M, Doroodmand MM, Hoseini A, Habibagahi M. 2011. The effects of single walled carbon nanotubes (SWCNTs) on proliferation and apoptosis of human peripheral blood mononuclear cells (PBMCs). Clinic. Biochem. 44: 290–295

    Article  Google Scholar 

  • Mondal A, Basu R, Das S, Nandy P. 2011. Beneficial role of carbon nanotubes on mustard plant growth: an agricultural prospect. J. Nanopart. Res. 13: 4519–4528

    Article  CAS  Google Scholar 

  • Monthioux M, Serp P, Flahaut E, Razafinimanana M, Laurent C, Peigney A, Bacsa W, Broto JM. 2010. Introduction to carbon nanotubes. In B Bhushan, ed, Handbook of Nanotechnology, Springer, Berlin, pp 47–118

    Chapter  Google Scholar 

  • Musante C, White J. 2010. Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles. Environ. Toxicol. 27: 510–517

    Article  PubMed  Google Scholar 

  • Nascimento WM. 2003. Muskmelon seed germination and seedling development in response to seed priming. Sci. Agr. 60: 71–75

    Article  Google Scholar 

  • Samaj J, Baluska F, Voigt B, Schlicht M, Volkmann D, Menzel D. 2004. Endocytosis, actin cytoskeleton, and signaling. Plant Physiol. 135: 1150–1161

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sharghi H, Aberi M, Doroodmand MM. 2011. One-pot synthesis of 2-arylbenzimidazole, 2-arylbenzothiazole and 2- arylbenzoxazole derivatives using vanadium(IV)-Salen complex as homogeneous catalyst and vanadium(IV)- Salen complex nanoparticles immobilized onto silica. J. Iran. Chem. Soc. 9: 189–204

    Article  Google Scholar 

  • Sheykhbaglou R, Sedghi M, Tajbakhsh Shishevan M, Sharifi RS. 2010. Effects of nano-iron oxide particles on agronomic traits of soybean. Not. Sci. Biol. 2: 112–113

    Google Scholar 

  • Soleimani A, Doroodmand M, Sabaghi S. 2012. Comparative investigation on the correction factors of hydrogen permeability on CNTs-mixed matrix membrane. Intl. J. Nano Dimension 4: 217–221

    Google Scholar 

  • Ten XM, Lin C, Fugetsu B. 2009. Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon 47: 3479–3487

    Article  Google Scholar 

  • Tiwari DK, Dasgupta-Schubert N, Villaseñor Cendejas LM, Villegas J, Carreto Montoya L, Borjas García S E. 2014. Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Appl. Nanosci. 4: 577–591

    Article  CAS  Google Scholar 

  • Wang XP, Han HY, Liu XQ, Gu XX, Chen K, Lu DL. 2012. Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants. J. Nanopart. Res. 14: 841–50

    Article  Google Scholar 

  • Yuan HG, Hu SL, Huang P, Song H, Wang K, Ruan J, He R, Cui DX. 2011. Single walled carbon nanotubes exhibit dual-phase regulation to exposed Arabidopsis mesophyll cells. Nanoscale Res. Lett. 6: 44–52

    PubMed Central  Google Scholar 

  • Zheng L, Hong F, Lu S, Liu C. 2005. Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol. Trace Elem. Res. 104: 83–91

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maryam Haghighi or Jaime A. Teixeira da Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghighi, M., Teixeira da Silva, J.A. The effect of carbon nanotubes on the seed germination and seedling growth of four vegetable species. J. Crop Sci. Biotechnol. 17, 201–208 (2014). https://doi.org/10.1007/s12892-014-0057-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-014-0057-6

Key words

Navigation