Skip to main content
Log in

Evaluation of genetic diversity in Korean soybean landraces by protein banding patterns using high-throughput screening

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

The agronomic performance and storage protein patterns of 722 soybean landraces collected from eight geographically different Korean locations were investigated. The days to 50% flowering, days to maturity, and 100-seed weight ranged from 68.9 to 71.9 (d), 140.1 to 146.6 (d), and 22.4 to 26.8 (g), respectively. High-throughput protein profiling electrophoresis was performed, and the banding patterns were analyzed. Among the 722 soybean landraces, lipoxygenase bands were found to be absent in 21 lines. Nei’s gene diversity (h) ranged from 0 to 0.2642, with an average value of 0.1565. The mean coefficient of gene differentiation (Gst) was 0.0944, and the estimated gene flow (Nm) in the population was 4.7971. In a correlation matrix between the agronomic traits and protein banding patterns, the acidic banding pattern was significantly associated with all the other factors. The phenotypic and genotypic differences of the collection areas were evaluated, and the excellent soybean lines with high-value proteins, including 11S globulins, or without antinutritional factors such as lipoxygenase and trypsin inhibitor were selected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bushehri SAA, Abd-Mishani C, Yazdi-Samadi B, Sayed-Tabatabaei BE. 2000. Variety specific electrophoretic profiles of soybean cultivars. Iran. J. Agric. Sci. 31: 55–61

    Google Scholar 

  • Cai T, Chang KC. 1999. Processing effect on soybean storage proteins and their relationship with tofu quality. J. Agric. Food Chem. 47: 720–727

    Article  PubMed  CAS  Google Scholar 

  • Carlson JB, Lersten NR. 1987. In JR Wilcox, ed., Soybeans: Improvement, production, and useduses. 2nd ed. Agron. Monogr. 16. ASA. CSSSA, and SSSA, Madison.WT. Reprod. Morphol. pp 97–132

  • Cherdouh A, Khelifi D, Carrillo JM, Nieto-Taladriz MT. 2005. The high and low molecular weight glutenin subunit polymorphism of Algerian durum wheat landraces and old cultivars. Plant Breed. 124: 338–342

    Article  CAS  Google Scholar 

  • Cho GT, Lee J, Moon JK, Yoon MS, Baek HJ, Kang JH, Kim TS, Paek NC. 2008. Genetic diversity and population structure of Korean soybean landrace [Glycine max (L.) Merr.]. J. Crop Sci. Biotech. 11: 83–90

    Google Scholar 

  • Collard BC, Mackill DJ. 2008. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 363: 557–572

    Article  PubMed  CAS  Google Scholar 

  • Emre I. 2009. Electrophoretic analysis of some Lathyrus L. species based on seed storage proteins. Genet. Resour. Crop Evol. 56: 31–38

    Article  Google Scholar 

  • Hamrick JL, Nason JD. 2000. Gene flow in forest trees. In A Young, D Boshier, T Boyle, eds, Forest Conservation Genetics, Principles and Practice. CABI Publishing, Wallingford, pp 81–89

    Google Scholar 

  • Han OK, Abe J, Shimamoto Y. 1999. Genetic diversity of soybean landraces in Korea. Kor. J. Crop Sci. 44: 256–262

    Google Scholar 

  • Hirata T, Abe J, Shimamoto Y. 1999. Genetic structure of the Japanese soybean population. Genet. Resour. Crop Evol. 46: 441–453

    Article  Google Scholar 

  • Hughes SA, Murphy PA. 1983. Varietal influence on the quantity of glycinin in soybeans. J. Agric. Food Chem. 31: 376–379

    Article  PubMed  CAS  Google Scholar 

  • Hussain A, Ramirez H, Bushuk W. 1986. Field bean (Phaseolus vugaris L.) cultivar identification by electrophoregrams of cotyledon storage proteins. Euphytica 35: 729–732

    Article  Google Scholar 

  • Igrejas G, Guedes-Pinto H, Carmide V, Branlard G. 1999. Seed storage protein diversity in triticale varieties commonly grown in Portugal. Plant Breed. 118: 303–306

    Article  CAS  Google Scholar 

  • Jaradat AA, Shahid M. 2006. Patterns of phenotypic variation in a germplasm collection of Carthamus tinctorius L. from the Middle East. Genet. Resour. Crop Evol. 53: 225–244

    Article  Google Scholar 

  • Juan R, Pastor J, Alaiz M, Vioque J. 2007. Electrophoretic characterization of Amaranthus L. seed proteins and its systematic implications. Bot. J. Linn. Soc. 155: 57–63

    Article  Google Scholar 

  • Khoshroo SMR, Khavarinejad R, Baghizadeh A, Fahimi H, Mohammadi ZN. 2011. Seed storage protein electrophoretic profiles in some Iranian date palm (Phoenix dactylifera L.) cultivats. Afr. J. Biotechnol. 10: 17793–17804

    CAS  Google Scholar 

  • Larsen AL. 1967. Electrophoretic differences in seed proteins among varieties of soybean Glycin max (L.) Merrill. Crop Sci. 7: 311–323

    Article  CAS  Google Scholar 

  • Lee KJ, Kim JB, Kim SH, Ha BK, Lee BM, Kang SY, Kim DS. 2011. Alteration of seed storage protein composition in soybean [Glycine max (L.) Merrill] mutant lines induced by γ-irradiation mutagenesis. J. Agric. Food Chem. 59: 12405–12410

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Nelson RL. 2001. Genetic diversity among accessions from three countries measured by RAPDs. Crop Sci. 41: 1337–1347

    Article  CAS  Google Scholar 

  • Liu SH, Zhou RB, Tian SJ, Gai JY. 2007. A Study on Subunit Groups of Soybean Protein Extracts under SDSPAGE. J. Am. Oil Chem. Soc. 84: 793–780

    Article  CAS  Google Scholar 

  • Malik MFA, Qureshi AS, Ashraf M, Rashid Khan M, Javed A. 2009. Evaluation of genetic diversity in soybean (Glycine max) lines using seed protein electrophoresis. Aust. J. Crop Sci. 3: 107–112

    CAS  Google Scholar 

  • Manjaya JG, Suseelan KN, Gopalakrishna T, Pawar SE, Bapat VA. 2007. Radiation induced variability of seed storage proteins in soybean [Glycine max (L.) Merrill]. Food Chem. 100: 1324–1327

    Article  CAS  Google Scholar 

  • Mcdermott JM, Mcdonald BA. 1993. Gene flow in plant photosystems. Annu, Rev, Phytopathol 31: 353–373

    Article  Google Scholar 

  • Miernyk JA, Hajduch M. 2011. Seed proteomics. J. Proteomics 74: 389–400

    Article  PubMed  CAS  Google Scholar 

  • Mori T, Nakamura T, Utsumi S. 1981. Gelation mechanism of soybean 11S globulin: Formation of soluble aggregates as transient intermediates. J. Food Sci. 47: 26–30

    Article  CAS  Google Scholar 

  • Murphy PA, Resurreccion AP. 1984. Varietal and environmental differences in soybean glycinin and b-conglycinin content. J. Agric. Food Chem. 32: 911–915

    Article  CAS  Google Scholar 

  • Pettengill JB, Neel MC. 2008. Phylogenetic patterns and conservation among North American members of the genus Agalinis (Orobanchaceae). BMC Evol. Biol. 8: 264

    Article  PubMed  Google Scholar 

  • Rashed MA, Fahmy EM, Sharabash MTM, Hammad AH, El-Demerdash HM. 1997. Biochemical genetic markers for discriminating high yielding soybean plants (Glycine max L.) after irradiation with gamma rays. J. Agric. Sci., Ain Shams Univ. Cairo. 5: 69–87

    Google Scholar 

  • Saio K, Kamiya M, Watanabe T. 1969. Food processing characteristics of soybean 11S and 7S proteins. Part I. Effect of difference of protein components among soybean varieties on formation of tofu gel. Agric. Biol. Chem. 33: 1301–1308

    Article  CAS  Google Scholar 

  • Shibasaki M, Suzuki S, Tajima S, Nemoto H, Kuruome T. 1980. Allergenicity of major component proteins of soybean. Int. Arch. Appl. Immunol. 61: 441–444

    Article  CAS  Google Scholar 

  • SPSS. 1999. SPSS for Windows, version 10.0. SPSS Inc., Chicago, USA

    Google Scholar 

  • Stegemann H, Afify AEMR, Hussein KRF. 1987. Identification of date (Phoenix dactylifera) cultivars by protein patterns. Phytochemistry 26: 149–153

    Google Scholar 

  • Stejskal J, Griga M. 1995. Comparative analysis of some isozymes and proteins in somatic and zygotic embryos of soybean [Glycin max (L.) Merr.]. J. Plant Physiol. 146: 497–502

    Article  CAS  Google Scholar 

  • Stoilova T, Cholakova N, Markova M. 2006. Variation in seed protein and isoenzyme patterns in Cucurbita cultivars. Biol. Plant 50: 450–452

    Article  CAS  Google Scholar 

  • Tavaud-Pirra M, Sartre P, Nelson R, Santoni S, Texier N, Roumet P. 2009. Genetic diversity in a soybean collection. Crop Sci. 49: 895–902

    Article  CAS  Google Scholar 

  • Tsukada Y, Kitamura K, Harada K, Kaizuma N. 1986. Genetic analysis of two major sub-units (b-conglycinin and glycinin) in soybean seeds. Jpn. J. Soybean 36: 390–400

    CAS  Google Scholar 

  • Vladova R, Pandeva R, Petcolicheva K. 2000. Seed storage proteins in Capsicum annuum cultivars. Biol. Plant 43: 291–295

    Article  CAS  Google Scholar 

  • Wolf WJ, Babcock GE, Smith AK. 1961. Ultracentrifugal differences in soybean protein composition. Nature 191: 1395–1396

    Article  PubMed  CAS  Google Scholar 

  • Wolf WJ, Briggs DR. 1956. Ultracentrifugal investigation of the effect of neutral salts on the extraction of soybean proteins. Arch. Biochem. Biophys. 63: 40–49

    Article  PubMed  CAS  Google Scholar 

  • Wolf WJ, Tamura T. 1968. Heat denaturation of soybean 11S protein. Cereal Chem. 46: 331–344

    Google Scholar 

  • Wright S. 1969. Evolution and genetics of populations vol 2. The Theory of Gene Frequencies. University of Chicago Press, Chicago

    Google Scholar 

  • Yeh FC, Yang RC, Boyle TBJ, Ye ZH, Mao JX. 1997. POPGENE V 1.31 (on-line). http://www.ualberta.ca/~fyeh

    Google Scholar 

  • Yuzbasioglu E, Acik L, Ozcan S. 2008. Seed protein diversity among lentil cultivars. Bio Plant 52: 126–128

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Sub Kim.

Additional information

First two authors equally contributed.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velusamy, V., Lee, K.J., Ha, BK. et al. Evaluation of genetic diversity in Korean soybean landraces by protein banding patterns using high-throughput screening. J. Crop Sci. Biotechnol. 16, 189–195 (2013). https://doi.org/10.1007/s12892-013-0068-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-013-0068-8

Key words

Navigation