Skip to main content

Advertisement

Log in

Stopping the spin cycle: genetics and bio-banking as a tool for addressing the laundering of illegally caught wildlife as ‘captive-bred’

  • Methods and Resources Article
  • Published:
Conservation Genetics Resources Aims and scope Submit manuscript

Abstract

The laundering of wild caught animals as ‘captive bred’ is an emerging trend in wildlife crime and the illegal pet trade. Enforcement of such activities requires accurate identification of laundered individuals, the development of validated genetic tools to investigate pedigrees, and the impetus of agencies involved in compliance to implement. The aim of this study was to assess the utility of 13 previously developed species-specific microsatellite loci in elucidating familial relationships in an endemic Australian snake species, the broad-headed snake (Hoplocephalus bungaroides), for which illegal activity had been identified as a threat to the species. We tested these genetic markers on a mix of captive animals held by zoos, privately owned individuals kept under licence, seized animals, and wild-sourced individuals. These loci contain sufficient variability to clearly discriminate the ‘zoo’ animals from the ‘wild’ and ‘privately’ held animals, however, considerable overlap between ‘wild’ and ‘private’ sample groups suggest recent gene flow between wild and privately-owned specimens. Inconsistent tracking of privately held animals makes it difficult to differentiate between legal and illegal acquisition, however the genetic patterns observed demonstrate that genetic markers can be used to elucidate between true captive bred animals in some scenarios. On the basis of our findings in this study, we recommend the implementation of genetic bio-banking for all legally traded wildlife to ensure that claimed captive-bred pedigree relationships can be validated and monitored long-term. These bio-banked samples can then be used to verify captive breeding in traded wildlife.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alacs E, Georges A (2008) Wildlife across our borders: a review of the illegal trade in Australia Australian. J Forensic Sci 40:147–160

    Google Scholar 

  • Arèvalo E, Davis SK, Sites JW (1994) Mitochondrial DNA sequence divergence and phylogenetic relationships among eight chromosome races of the Sceloporus grammicus complex (Phrynosomatidae) in central Mexico. Syst Biol 43:387–418

    Article  Google Scholar 

  • Blouin MS, M. P, Lotz S VL (1996) Use of microsatellite loci to classify individuals by relatedness. Mol Ecol 5:393–401

    Article  PubMed  CAS  Google Scholar 

  • Clement MJ, Snell Q, Walker P, Posada D, Crandall KA (2002) TCS: estimating gene genealogies. In: ipdps, p 0184

  • Conde DA et al (2013) Zoos through the lens of the IUCN red list: a global metapopulation approach to support conservation breeding programs. PLoS ONE. doi:10.1371/journal.pone.0080311

    Article  PubMed  PubMed Central  Google Scholar 

  • Dawnay N, Ogden R, Thorpe RS, Pope LC, Dawson DA, McEwing R (2008) A forensic STR profiling system for the Eurasian badger: a framework for developing profiling systems for wildlife species. Forensic Sci Int Genet 2:47–53

    Article  PubMed  Google Scholar 

  • Dennison S, Smith SM, Stow AJ (2012) Long-distance geneflow and habitat specificity of the rock-dwelling coppertail skink, Ctenotus taeniolatus. Austral Ecol 37:258–267

    Article  Google Scholar 

  • Dennison S, McAlpin S, Chapple DG, Stow AJ (2015) Genetic divergence among regions containing the vulnerable great desert skink (Liopholis kintorei) in the Australian arid zone. PLoS ONE 10:e0128874

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Frankham GJ, Hinds MC, Johnson RN (2015) Development of 16 forensically informative microsatellite loci to detect the illegal trade of broad headed snakes (Hoplocephalus bungaroides). Conserv Genet Resour 7:533

    Article  Google Scholar 

  • Gilbert D (2015) Broad-headed snake studbook. Zoo and Aquarium Association Australasia, Mosman

    Google Scholar 

  • Goncalves PFM, Oliveira-Marques AR, Matsumoto TE, Miyaki CY (2015) DNA barcoding identifies illegal parrot trade. J Hered 106:560–564. doi:10.1093/jhered/esv035

    Article  PubMed  CAS  Google Scholar 

  • Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-Statistics. J Hered 86:485–486

    Article  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9. 3), pp 485–486

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  CAS  Google Scholar 

  • Hastie J, McCrea-Steele T (2014) Wanted-dead or alive: exposing online wildlife trade. International Fund for Animal Welfare, London

    Google Scholar 

  • Hulme PE (2015) Invasion pathways at a crossroad: policy and research challenges for managing alien species introductions. J Appl Ecol 52:1418–1424. doi:10.1111/1365-2664.12470

    Article  Google Scholar 

  • Jan C, Fumagalli L (2016) Polymorphic DNA microsatellite markers for forensic individual identification and parentage analyses of seven threatened species of parrots (family Psittacidae). PeerJ 4:e2416. doi:10.7717/peerj.2416

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson RN, Wilson-Wilde L, Linacre A (2014) Current and future directions of DNA in wildlife forensic science. Forensic Sci Int Genet 10:1–11. doi:10.1016/j.fsigen.2013.12.007

    Article  PubMed  CAS  Google Scholar 

  • Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  PubMed  CAS  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:1–15. doi:10.1186/1471-2156-11-94

    Article  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  • Kamvar ZN, Tabima JF, Grünwald NJ (2014) Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2:e281

    Article  PubMed  PubMed Central  Google Scholar 

  • Kisling VN (2001) Ancient collections and menageries. In: Kisling VN (ed) Zoo and aquarium history: ancient animal collections to zoological gardens. CRC Press, Boca Raton

    Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  PubMed  CAS  Google Scholar 

  • Linacre AMT, Tobe SS (2013) Wildlife DNA analysis: applications in forensic science. Wiley-Blackwell, Oxford

    Book  Google Scholar 

  • Linacre A et al (2011) ISFG: recommendations regarding the use of non-human (animal) DNA in forensic genetic investigations. Forensic Sci Int Genet 5:501–505

    Article  PubMed  CAS  Google Scholar 

  • Livingston B (1974) Animals, people, places. Arbor, New York

    Google Scholar 

  • Lynch M, Ritland K (1999) Estimation of pairwise relatedness with molecular markers. Genetics 152:1753–1766

    PubMed  PubMed Central  CAS  Google Scholar 

  • Millins C, Howie F, Everitt C, Shand M, Lamm C (2014) Analysis of suspected wildlife crimes submitted for forensic examinations in Scotland. Forensic Sci Med Pathol 10:357–362. doi:10.1007/s12024-014-9568-1

    Article  PubMed  Google Scholar 

  • Mucci N, Mengoni C, Randi E (2014) Wildlife DNA forensics against crime: Resolution of a case of tortoise theft. Forensic Sci Int Genet 8:200–202. doi:10.1016/j.fsigen.2013.10.001

    Article  PubMed  Google Scholar 

  • Ogden R, Linacre A (2015) Wildlife forensic science: a review of genetic geographic origin assignment. Forensic Sci Int Genet 18:152–159

    Article  PubMed  CAS  Google Scholar 

  • Petrossian GA, Piresb SF, van Uhmc DP (2016) An overview of seized illegal wildlife entering the United States. Global Crime 17:181–201

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  PubMed Central  CAS  Google Scholar 

  • Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evol Int J Org Evol 43:258–275

    Article  Google Scholar 

  • Shine R, Webb JK, Fitzgerald M, Sumner J (1998) The impact of bush-rock removal on an endangered snake species, Hoplocephalus bungaroides (Serpentes : Elapidae). Wildl Res 25:285–295. doi:10.1071/WR97022

    Article  Google Scholar 

  • Signorile AL, Reuman DC, Lurz PWW, Bertolino S, Carbone C, Wang J (2016) Using DNA profiling to investigate human-mediated translocations of an invasive species. Biol Conserv 195:97–105

    Article  Google Scholar 

  • Strehlow H (2001) Zoological gardens of Western Europe. In: Kisling VN (ed) Zoo and aquarium history: ancient animal collections to zoological gardens. CRC Press, Boca Raton

    Google Scholar 

  • Sumner J, Webb JK, Shine R, Keogh JS (2010) Molecular and morphological assessment of Australia’s most endangered snake, Hoplocephalus bungaroides, reveals two evolutionarily significant units for conservation. Conserv Genet 11:747–758. doi:10.1007/s10592-009-9863-7

    Article  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Temple-Smith P, Grant T (2002) Uncertain breeding: a short history of reproduction in monotremes. Reprod Fertil Dev 13:487–497. doi:10.1071/RD01110

    Article  Google Scholar 

  • UNEP, INTERPOL (2014) The environmental crime crisis: threats to sustainable development from illegal exploitation and trade in wildlife and forest resources. UNEP/GRID, Arendal

    Google Scholar 

  • United_Nations (2015) Tackling illicit trafficking in wildlife. http://www.un.org/ga/search/view_doc.asp?symbol=A/RES/69/314

  • Wang J (2002) An estimator for pairwise relatedness using molecular markers. Genetics 160:1203–1215

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wang J (2011) COANCESTRY: a program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol Ecol Resour 11:141–145

    Article  PubMed  Google Scholar 

  • Webb JK, Brook BW, Shine R (2002) Collectors endanger Australia’s most threatened snake, the broadheaded snake Hoplocephalus bungaroides. Oryx 36:170–181

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38(6):1358–1370

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the zoos (Zoos Victoria and Adelaide Zoo) and all the private holders who provided samples from their snakes for use in this study. Thanks also to the veterinarians who assisted in collection and P. Armstrong for her assistance. This work was initiated by the NSW Office of Environment and Heritage (OEH) and funded by the Australian Museum, OEH and BioPlatforms Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn J. Hogg.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Samples collected for this study were done so under a management request from the NSW Office of Environment and Heritage. Samples were ethically collected by a veterinarian. Samples from zoo animals were collected under Zoos Victoria animal ethics permit number ZV15001.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hogg, C.J., Dennison, S., Frankham, G.J. et al. Stopping the spin cycle: genetics and bio-banking as a tool for addressing the laundering of illegally caught wildlife as ‘captive-bred’. Conservation Genet Resour 10, 237–246 (2018). https://doi.org/10.1007/s12686-017-0784-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12686-017-0784-3

Keywords

Navigation