Skip to main content
Log in

Comparison of established methods for quantifying genotyping error rates in wildlife forensics

  • Application Essays
  • Published:
Conservation Genetics Resources Aims and scope Submit manuscript

Abstract

Several methods have been applied to calculate genotyping error rates (GER) for non-invasive population size estimations. However, there is a lack of comparability between these methods. Here we focused on the comparison of methods for determination of GER within one study using faeces samples of wild boars (Sus scrofa). Error rates were calculated by (1) comparison of reference tissue samples and rectum faeces samples (2) the number of deviations between replicates and the assumed consensus genotypes, (3) re-analysis of a subsample interpreted by allelic and genotype comparisons, and (4) a blind-test of anonymously subdivided faecal samples. The error rates differed widely between these four methods (0–57.5 %) and underline the need of a consensus approach. The blind-test resulted in a GER of 4.3 %. We recommend conducting such a blind-test for estimating realistic GER when starting a pilot study in wildlife forensics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arrendal J, Vila C, Bjorklund M (2007) Reliability of noninvasive genetic census of otters compared to field censuses. Conserv Genet 8:1097–1107

    Article  Google Scholar 

  • Bayes M, Smith K, Alberts S, Altmann J, Bruford M (2000) Testing the reliability of microsatellites typing from feacal DNA. Conserv Genet 1:173–176

    Article  CAS  Google Scholar 

  • Beja-Pereira A, Oliveira R, Alves PC, Schwartz MK, Luikart G (2009) Advancing ecological understandings through technological transformations in noninvasive genetics. Mol Ecol Resour 9(5):1279–1301

    Article  PubMed  Google Scholar 

  • Bonin A, Bellemain E, Bronken Eidesen P, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetics. Mol Ecol 13(11):3261–3273

    Article  PubMed  CAS  Google Scholar 

  • Bortz J, Doering N (2002) Forschungsmethoden und evaluation. Springer, Berlin

    Google Scholar 

  • Broquet T, Petit E (2004) Quantifying genotyping errors in noninvasive population genetics. Mol Ecol 13(11):3601–3608

    Article  PubMed  CAS  Google Scholar 

  • Broquet T, Menard N, Petit E (2007) Noninvasive population genetics: a review of sample source, diet, fragment length and microsatellite motif effects on amplification success and genotyping error rates. Conserv Genet 8(1):249–260

    Article  Google Scholar 

  • Creel S, Spong G, Sands JL, Rotella J, Zeigle J, Joe L, Murphy KM, Smith D (2003) Population size estimation in Yellowstone wolves with error-prone noninvasive microsatellite genotypes. Mol Ecol 12(7):2003–2009

    Article  PubMed  Google Scholar 

  • Deagle EB, Eveson JP, Jarman SM (2006) Quantification in DNA recovered from highly degraded samples- a case study on DNA in faeces. Front Zool 3:11

    Article  PubMed  Google Scholar 

  • Ferrando A, Lecis R, Domingo-Roura X, Ponsa M (2008) Genetic diversity and individual identification of reintroduced otters (Lutra lutra) in north-eastern Spain by DNA genotyping of spraints. Conserv Genet 9(1):129–139

    Article  CAS  Google Scholar 

  • Flagstad O, Roed K, Stacy JE, Jakobsen KS (1999) Reliable noninvasive genotyping based on excremental PCR of nuclear DNA purified with a magnetic bead protocol. Mol Ecol 8(5):879–883

    Article  PubMed  CAS  Google Scholar 

  • Frantz AC, Pope LC, Carpenter PJ, Roper TJ, Wilson GJ, Delahay RJ, Burke T (2003) Reliable microsatellite genotyping of the Eurasian badger (Meles meles) using faecal DNA. Mol Ecol 12(6):1649–1661

    Article  PubMed  CAS  Google Scholar 

  • Garnier JN, Bruford MW, Goossens B (2001) Mating system and reproductive skew in the black rhinoceros. Mol Ecol 10(8):2031–2041

    Article  PubMed  CAS  Google Scholar 

  • Hajkova P, Zemanova B, Roche K, Hajek B (2009) An evaluation of field and noninvasive genetic methods for estimating Eurasian otter population size. Conserv Genet 10(6):1667–1681

    Article  Google Scholar 

  • Harris RB, Winnie J, Amish SJ, Beja-Pereira A, Godinho R, Costa V, Luikart G (2010) Argali Abundance in the Afghan Pamir using capture-recapture modeling from fecal DNA. J Wildlife Manage 74(4):668–677

    Article  Google Scholar 

  • Hedmark E, Flagstad Ø, Segerstroem P, Persson J, Landa A, Ellegren H (2004) DNA-based individual and sex identification from wolverine (Gulo gulo) faeces and urine. Conserv Genet 5:405–410

    Article  CAS  Google Scholar 

  • Hoffman JI, Amos W (2005) Microsatellite genotyping errors: detection approaches, common sources and consequences for paternal exclusion. Mol Ecol 14(2):599–612

    Article  PubMed  CAS  Google Scholar 

  • Idaghdour Y, Broderick D, Korrida A (2003) Faeces as a source of DNA for molecular studies in a threatened population of great bustards. Conserv Genet 4(6):789–792

    Article  CAS  Google Scholar 

  • Kolodziej K, Theissinger K, Brün J, Schulz H.K., Schulz R. (2011) Determination of the minimum number of microsatellite markers for individual genotyping in wild boar (Sus scrofa) using a test with close relatives. Eur J Wildl Res published online, doi: 10.1007/s10344-011-0588-9

  • Lampa S, Gruber B, Henle K, Hoehn M (2008) An optimisation approach to increase DNA amplification success of otter faeces. Conserv Genet 9(1):201–210

    Article  CAS  Google Scholar 

  • Lucchini V, Fabbri E, Marucco F, Ricci S, Boitani L, Randi E (2002) Noninvasive molecular tracking of colonizing wolf (Canis lupus) packs in the western Italian Alps. Mol Ecol 11(5):857–868

    Article  PubMed  CAS  Google Scholar 

  • Maudet C, Luikart G, Dubray D, von Hardenberg A, Taberlet P (2004) Low genotyping error rates in wild ungulate faeces sampled in winter. Mol Ecol Notes 4(4):772–775

    Article  CAS  Google Scholar 

  • Murphy M, Kendall K, Robinson A, Waits L (2007) The impact of time and field conditions on brown bear (Ursus arctos) faecal DNA amplification. Conserv Genet 8(5):1219–1224

    Article  Google Scholar 

  • Paetkau D (2003) An empirical exploration of data quality in DNA-based population inventories. Mol Ecol 12(6):1375–1387

    Article  PubMed  CAS  Google Scholar 

  • Pompanon F, Bonin A, Bellemain E, Taberlet P (2005) Genotyping errors: causes, consequences and solutions. Nat Rev Genet 6(11):847–859

    Article  PubMed  CAS  Google Scholar 

  • Prugh L, Ritland C, Arthur S, Krebs C (2005) Monitoring coyote population dynamics by genotyping faeces. Mol Ecol 14(5):1585–1596

    Article  PubMed  CAS  Google Scholar 

  • Taberlet P, Luikart G (1999) Non-invasive genetic sampling and individual identification. Biol J Linn Soc 68(1–2):41–55

    Article  Google Scholar 

  • Taberlet P, Griffin S, Goossens B, Questiau S, Manceau V, Escaravage N, Waits LP, Bouvet J (1996) Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res 24(16):3189–3194

    Article  PubMed  CAS  Google Scholar 

  • Valière N (2002) GIMLET: a computer program for analysing genetic individual identification data. Mol Ecol Notes 2(3):377–379

    Google Scholar 

  • Valière N, Bonenfant C, Toigo C, Luikart G, Gaillard JM, Klein F (2007) Importance of a pilot study for non-invasive genetic sampling: genotyping errors and population size estimation in red deer. Conserv Genet 8(1):69–78

    Article  Google Scholar 

  • Wehausen JD, Ramey RR 2nd, Epps CW (2004) Experiments in DNA extraction and PCR amplification from bighorn sheep feces: the importance of DNA extraction method. J Hered 95(6):503–509

    Article  PubMed  CAS  Google Scholar 

  • Wilberg MJ, Dreher BP (2004) Genecap: a programm for analysis of multilocus genotype data for non-invasive sampling and capture-recapture population estimation. Mol Ecol Notes 4(4):783–785

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank D. Huckschlag for good advices for the manuscript. We also thank R. Heydenreich for proofreading of this manuscript. Furthermore, we are grateful to T. Bürgi for technical assistance. This project was supported by the Foundation “Rheinland-Pfalz für Innovation” and the Ministry for Environment, Forestry and Consumer Protection, Rhineland-Palatinate. K.K. was supported through a Ph.D. scholarship from the Lotto Foundation Rhineland-Palatinate.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Kolodziej or K. Theissinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolodziej, K., Schulz, H.K., Theissinger, K. et al. Comparison of established methods for quantifying genotyping error rates in wildlife forensics. Conservation Genet Resour 5, 287–292 (2013). https://doi.org/10.1007/s12686-012-9729-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12686-012-9729-z

Keywords

Navigation