Skip to main content
Log in

Low levels of polymorphism at novel microsatellite loci developed for bathyergid mole-rats from South Africa

  • Technical Note
  • Published:
Conservation Genetics Resources Aims and scope Submit manuscript

Abstract

Eight microsatellite markers were developed for African mole-rats using the Fast Isolation by AFLP of Sequences Containing repeats (FIASCO) protocol and pyrosequencing. The markers were developed in Bathyergus suillus and applied to a selection of individuals from seven related taxa: Bathyergus janetta, Cryptomys hottentotus hottentotus, C. h. pretoriae, Fukomys damarensis, F. darlingi, F. mechowii and Georychus capensis. The markers displayed low to moderate variation with allele numbers ranging between one and six per species. We propose that larger repeat numbers at di-, tri- and tetranucleotide repeat loci generally yield higher levels of polymorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) GENETIX 4.05, Logiciel Sous WindowsTM Pour la Génétique Des Populations. Laboratoire Génome Populations, Interactions. CNRS UMR 5000. Université de Montpellier II, Montpellier, France

    Google Scholar 

  • Bennett NC, Faulkes CG (2000) African mole-rats ecology and eusociality. Cambridge University Press, UK

    Google Scholar 

  • Bishop JM, Jarvis JUM, Spinks AC, Bennett NC, O’Ryan C (2004) Molecular insight into patterns of colony composition and paternity in the common mole-rat Cryptomys hottentotus hottentotus. Mol Ecol 13:1217–1229

    Article  CAS  PubMed  Google Scholar 

  • Burland TM, Bishop JM, Ooryana C, Faulkes CG (2001) Microsatellite primers for the African mole-rat genus Cryptomys and cross-species amplification within the family Bathyergidae. Mol Ecol Notes 1:311–314

    Article  CAS  Google Scholar 

  • Burland TM, Bennett NC, Jarvis JUM, Faulkes C (2002) Eusociality in African mole-rats: new insights from patterns of genetic relatedness in the Damaraland mole-rat (Cryptomys damarensis). Proc R Soc Lond Ser B 269:1025–1030

    Article  Google Scholar 

  • Burland TM, Bennett NC, Jarvis JUM, Faulkes CG (2004) Colony structure and parentage in wild colonies of cooperatively breeding Damaraland mole-rats suggest incest avoidance alone may not maintain reproductive skew. Mol Ecol 13:2371–2379

    Article  CAS  PubMed  Google Scholar 

  • Dakin EE, Avise JC (2004) Microsatellite null alleles in parentage analysis. Heredity 93:504–509

    Article  CAS  PubMed  Google Scholar 

  • Estoup A, Jarne P, Cornuet J-M (2002) Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. Mol Ecol 11:1591–1604

    Article  CAS  PubMed  Google Scholar 

  • Faircloth BC (2008) Msatcommander: detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol Ecol Resour 8:92–94

    Article  CAS  Google Scholar 

  • Faulkes CG, Abbott DH, O’Brien GH, Lau L, Roy MR, Wayne RK, Bruford MW (1997) Micro- and macrogeographical genetical structure of colonies of naked mole-rats Heterocephalus glaber. Mol Ecol 6:615–628

    Article  CAS  PubMed  Google Scholar 

  • Jarvis JUM, Bennett NC (1990) The evolutionary history, population biology and social structure of African mole-rats: family Bathyergidae. In: Nevo E, Reig OA (eds) Evolution of subterranean mammals at the organismal, molecular levelpp. Wiley Liss, New York, pp 97–128

    Google Scholar 

  • Messier W, Li SH, Stewart CB (1996) The birth of microsatellites. Nature 381:483

    Article  CAS  PubMed  Google Scholar 

  • Patzenhauerova H, Bryja J, Sumbera R (2010) Kinship structure and mating system in a solitary subterranean rodent, the silvery mole-rat. Behav Ecol Sociobiol 64:757–767

    Article  Google Scholar 

  • Reeve HK, Westneat DF, Noon WA, Sherman PW, Aquadro CF (1990) DNA “fingerprinting” reveals high levels of inbreeding in colonies of the eusocial naked mole-rat. Proc Natl Acad Sci USA 87:2496–2500

    Article  CAS  PubMed  Google Scholar 

  • Rousset F (2008) Genepop’007: a complete re-implementation of the genepop software for windows and linux. Mol Ecol Resour 8:103–106

    Article  Google Scholar 

  • Rozen S, Skaletsky HJ (1998) Primer3. Code available at http://www-genome.wi.mit.edu/genome_software/other/primer3.html

  • Skinner JD, Chimimba CT (2005) Mammals of the southern African subregion, 3rd edn. Cambridge University Press, Cape Town

    Google Scholar 

  • Toth G, Gaspari Z, Jurka J (2000) Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res 10:967–981

    Article  CAS  PubMed  Google Scholar 

  • Weir BS (1979) Inferences about linkage disequilibrium. Biometrics 35:235–254

    Article  CAS  PubMed  Google Scholar 

  • Wierdl M, Dominska M, Petes TD (1997) Microsatellite instability in yeast: dependence on the length of the microsatellite. Genetics 146(3):769–779

    CAS  PubMed  Google Scholar 

  • Zane L, Bargelloni L, Patarnello T (2002) Strategies for microsatellite isolation: a review. Mol Ecol 11:1–16

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Department of Science and Technology and the National Research Foundation for funding from the SARCHi Chair for Mammal Behavioural Ecology and Physiology awarded to NCB. Hannah Thomas is thanked for providing sample tissues from animals. Funding was also provided by the University of Pretoria in provision of TCB’s postdoctoral fellowship. This work is based upon research supported by the National Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. C. Bray.

Appendix 1

Appendix 1

See Table 3.

Table 3 Basic Local Alignment Search Tool (BLAST) results for each locus when compared with the Mus musculus genome including identity, positional information and reference number

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bray, T.C., Bennett, N.C. & Bloomer, P. Low levels of polymorphism at novel microsatellite loci developed for bathyergid mole-rats from South Africa. Conservation Genet Resour 3, 221–224 (2011). https://doi.org/10.1007/s12686-010-9327-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12686-010-9327-x

Keywords

Navigation