Skip to main content
Log in

Progress of CO2 Electrochemical Methanation Using a Membrane Electrode Assembly

  • Review
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

CO2 reduction and fixation are one of the most interesting topics in the fields of environmental electrochemistry and electrocatalysis. Many studies on CO2 electroreduction using various metal electrodes have been reported. However, this reaction requires a high overpotential in general, which lowers the energy conversion efficiency and prevents its practical applications to reduce CO2 emission to the atmosphere. The use of a membrane electrode assembly (MEA) is expected to be a breakthrough for the CO2 electroreduction. Particularly, methanation (converting CO2 into CH4) with MEAs incorporating Cu-based catalysts attracts special attention as a tool for carbon cycling, thanks to high faradaic efficiencies and relatively high energy conversion efficiencies. Different from Cu, Pt has long been recognized as an inactive catalyst for CO2 reduction. Contrary to the common consensus, MEAs incorporating a Pt-based electrocatalyst were found very recently to be as active as Cu-based catalysts toward methanation under specific reaction conditions. The high activity of Pt arises from a reaction mechanism different from that for Cu; most likely the Langmuir–Hinshelwood mechanism for Pt and the Eley–Rideal mechanism for Cu. This mini-review discusses CO2 electrochemical methanation using MEAs as a potential method for carbon capture. The CO2 reduction to CH4 using a H2-CO2 fuel cell is also presented.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Copyright 2015 American Chemical Society.)

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. C. Hepburn, E. Adlen, J. Beddington, E.A. Carter, S. Fuss, N.M. Dowell, J.C. Minx, P. Smith, C.K. Williams, Nature (2019). https://doi.org/10.1038/s41586-019-1681-6

    Article  PubMed  Google Scholar 

  2. J.C. Abanades, E.S. Rubin, M. Mazzotti, H.J. Herzog, Energy Environ. Sci. (2017). https://doi.org/10.1039/C7EE02819A

    Article  Google Scholar 

  3. B. Dziejarski, R. Krzyżyńska, K. Andersson, Fuel (2023). https://doi.org/10.1016/j.fuel.2023.127776

    Article  Google Scholar 

  4. Y. Hori, K. Kikuchi, S. Suzuki, Chem. Lett. (1985). https://doi.org/10.1246/cl.1985.1695

    Article  Google Scholar 

  5. Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Electrochim. Acta (1994). https://doi.org/10.1016/0013-4686(94)85172-7

    Article  Google Scholar 

  6. M. Gattrell, N. Gupta, A. Co, J. Electroanal. Chem. (2006). https://doi.org/10.1016/j.jelechem.2006.05.013

    Article  Google Scholar 

  7. Y. Hori, Mod. Aspects Electrochem. (2008). https://doi.org/10.1007/978-0-387-49489-0_3

    Article  Google Scholar 

  8. E.V. Kondratenko, G. Mul, J. Baltrusaitis, G.O. Larraźabal, J. Pérez-Ramírez, Energy Environ. Sci. (2013). https://doi.org/10.1039/c3ee41272e

    Article  Google Scholar 

  9. J. Qiao, Y. Liu, F. Hong, J. Zhang, Chem. Soc. Rev. (2014). https://doi.org/10.1039/c3cs60323g

    Article  PubMed  Google Scholar 

  10. R. Kortlever, J. Shen, K. Jan, P. Schouten, F. Calle-Vallejo, M.T.M. Koper, J. Phys. Chem. Lett. (2015). https://doi.org/10.1021/acs.jpclett.5b01559

    Article  PubMed  Google Scholar 

  11. D.D. Zhu, J.L. Liu, S.Z. Qiao, Adv. Mater. (2016). https://doi.org/10.1002/adma.201504766

    Article  PubMed  PubMed Central  Google Scholar 

  12. R. Francke, B. Schille, M. Roemelt, Chem. Rev. (2018). https://doi.org/10.1021/acs.chemrev.7b00459

    Article  PubMed  Google Scholar 

  13. W. Zhang, Y. Hu, L. Ma, G. Zhu, Y. Wang, X. Xue, R. Chen, S. Yang, Z. Jin, Adv. Sci. (2018). https://doi.org/10.1002/advs.201700275

    Article  Google Scholar 

  14. A. Vasileff, C. Xu, Y. Jiao, Y. Zheng, S.-Z. Qiao, Chem (2018). https://doi.org/10.1016/j.chempr.2018.05.001

    Article  Google Scholar 

  15. Y.Y. Birdja, E. Pérez-Gallent, M.C. Figueiredo, A.J. Göttle, F. Calle-Vallejo, M.T.M. Koper, Nat. Energy (2019). https://doi.org/10.1038/s41560-019-0450-y

    Article  Google Scholar 

  16. M.G. Kibria, J.P. Edwards, C.M. Gabardo, C.-T. Dinh, A. Seifitokaldani, D. Sinton, E.H. Sargent, Adv. Mater. (2019). https://doi.org/10.1002/adma.201807166

    Article  PubMed  Google Scholar 

  17. T. Burdyny, W.A. Smith, Energy Environ. Sci. (2019). https://doi.org/10.1039/c8ee03134g

    Article  Google Scholar 

  18. P. De Luna, C. Hahn, D. Higgins, S.A. Jaffer, T.F. Jaramillo, E.H. Sargent, Science (2019). https://doi.org/10.1126/science.aav3506

    Article  PubMed  PubMed Central  Google Scholar 

  19. S. Zhu, T. Li, W.-B. Cai, M. Shao, ACS Energy Lett. (2019). https://doi.org/10.1021/acsenergylett.8b02525

    Article  Google Scholar 

  20. S. Nitopi, E. Bertheussen, S.B. Scott, X. Liu, A.K. Engstfeld, S. Horch, B. Seger, I.E.L. Stephens, K. Chan, C. Hahn, J.K. Nørskov, T.F. Jaramillo, I. Chorkendorf, Chem. Rev. (2019). https://doi.org/10.1021/acs.chemrev.8b00705

    Article  PubMed  Google Scholar 

  21. C. Xie, Z. Niu, D. Kim, M. Li, P. Yang, Chem. Rev. (2020). https://doi.org/10.1021/acs.chemrev.9b00220

    Article  PubMed  PubMed Central  Google Scholar 

  22. J. Zhang, W. Cai, F.X. Hu, H. Yang, B. Liu, Chem. Sci. (2021). https://doi.org/10.1039/d1sc01375k

    Article  PubMed  PubMed Central  Google Scholar 

  23. D. Karapinar, C.E. Creissen, J.G.R. de la Cruz, M.W. Schreiber, M. Fontecave, ACS Energy Lett. (2021). https://doi.org/10.1021/acsenergylett.0c02610

    Article  Google Scholar 

  24. F. Dattila, R.R. Seemakurthi, Y. Zhou, N. López, Chem. Rev. (2022). https://doi.org/10.1021/acs.chemrev.1c00690

    Article  PubMed  Google Scholar 

  25. H. Wu, A. Singh-Morgan, K. Qi, Z. Zeng, V. Mougel, D. Voiry, ACS Catal. (2023). https://doi.org/10.1021/acscatal.3c00201

    Article  PubMed  PubMed Central  Google Scholar 

  26. T. Yan, X. Chen, L. Kumari, J. Lin, M. Li, Q. Fan, H. Chi, T.J. Meyer, S. Zhang, X. Ma, Chem. Rev. (2023). https://doi.org/10.1021/acs.chemrev.2c00514

    Article  PubMed  Google Scholar 

  27. M. Thema, F. Bauer, M. Sterner, Renew. Sustain. Energy Rev. (2019). https://doi.org/10.1016/j.rser.2019.06.030

    Article  Google Scholar 

  28. H. Blanco, A. Faaij, Renewable Sustainable Energy Rev. (2018). https://doi.org/10.1016/j.rser.2017.07.062

    Article  Google Scholar 

  29. I. Merino-Garcia, E. Alvarez-Guerra, J. Albo, A. Irabien, Chem. Eng. J. (2016). https://doi.org/10.1016/j.cej.2016.05.032

    Article  Google Scholar 

  30. J. Ashok, S. Pati, P. Hongmanorom, Z. Tianxi, C. Junmei, S. Kawi, Catal. Today (2020). https://doi.org/10.1016/j.cattod.2020.07.023

    Article  Google Scholar 

  31. M. Biset-Peiróa, J. Guileraa, T. Zhang, J. Arbiol, T. Andreu, Appl. Catal. A (2019). https://doi.org/10.1016/j.apcata.2019.02.028

    Article  Google Scholar 

  32. H. Arandiyan, K. Kani, Y. Wang, B. Jiang, J. Kim, M. Yoshino, M. Rezaei, A.E. Rowan, H. Dai, Y. Yamauchi, A.C.S. Appl, Mater. Interfaces (2018). https://doi.org/10.1021/acsami.8b06977

    Article  Google Scholar 

  33. S. Rönsch, J. Schneider, S. Matthischke, M. Schlüter, M. Götz, J. Lefebvre, P. Prabhakaran, S. Bajohr, Fuel (2016). https://doi.org/10.1016/j.fuel.2015.10.111

    Article  Google Scholar 

  34. P. Kar, S. Farsinezhad, N. Mahdi, Y. Zhang, U. Obuekwe, H. Sharma, J. Shen, N. Semagina, K. Shankar, Nano Res. (2016). https://doi.org/10.1007/s12274-016-1225-4

    Article  Google Scholar 

  35. Y. Su, Y. Cheng, Z. Li, Y. Cui, C. Yang, Z. Zhong, Y. Song, G. Wang, L. Zhuang, J. Energy Chem. (2024). https://doi.org/10.1016/j.jechem.2023.10.010

    Article  Google Scholar 

  36. G. Dong, G. Wang, J. Cheng, M. Li, Z. Liang, D. Geng, W. Tang, Appl. Catal. B (2024). https://doi.org/10.1016/j.apcatb.2023.123444

    Article  Google Scholar 

  37. L. Zhang, J. Feng, L. Wu, X. Ma, X. Song, S. Jia, X. Tan, X. Jin, Q. Zhu, X. Kang, J. Ma, Q. Qian, L. Zheng, X. Sun, B. Han, J. Am. Chem. Soc. (2023). https://doi.org/10.1021/jacs.3c06697

    Article  PubMed  PubMed Central  Google Scholar 

  38. M. Wang, H. Chen, M. Wang, J. Wang, Y. Tuo, W. Li, S. Zhou, L. Kong, G. Liu, L. Jiang, G. Wang, Angew. Chem. Int. Ed. (2023). https://doi.org/10.1002/anie.202306456

    Article  Google Scholar 

  39. Y. Yang, S. Louisia, S. Yu, J. Jin, I. Roh, C. Chen, M.V.F. Guzman, J. Feijóo, P.-C. Chen, H. Wang, C.J. Pollock, X. Huang, Y.-T. Shao, C. Wang, D.A. Muller, H.D. Abruña, P. Yang, Nature (2023). https://doi.org/10.1038/s41586-022-05540-0

    Article  PubMed  PubMed Central  Google Scholar 

  40. M. Zhuansun, Y. Liu, R. Lu, F. Zeng, Z. Xu, Y. Wang, Y. Yang, Z. Wang, G. Zheng, Y. Wang, Angew. Chem. Int. Ed. (2023). https://doi.org/10.1002/anie.202309875

    Article  Google Scholar 

  41. M. Barman, V.S.S. Mosali, A.M. Bond, J. Zhang, A. Sarkar, Electrocatalysis (2023). https://doi.org/10.1007/s12678-023-00814-1

    Article  Google Scholar 

  42. Q. Zhao, Y. Wang, S. Zhu, E.P. Delmo, Y. Cui, T. Lin, R.C. Dutta, J. Li, F. Xiao, T. Li, Y. Wang, J. Jang, Q. Wei, G. Chen, M. Shao, J. Phys. Chem. C (2022). https://doi.org/10.1021/acs.jpcc.2c05522

    Article  Google Scholar 

  43. Y. Baek, H. Song, D. Hong, S. Wang, S. Lee, Y.-C. Joo, G.-D. Lee, J. Oh, J. Mater. Chem. A (2022). https://doi.org/10.1039/D1TA10345H

    Article  Google Scholar 

  44. T. Kim, G.T.R. Palmore, Nat. Commun. (2020). https://doi.org/10.1038/s41467-020-16998-9

    Article  PubMed  PubMed Central  Google Scholar 

  45. K. Zhao, X. Nie, H. Wang, S. Chen, X. Quan, H. Yu, W. Choi, G. Zhang, B. Kim, J.G. Chen, Nat. Commun. (2020). https://doi.org/10.1038/s41467-020-16381-8

    Article  PubMed  PubMed Central  Google Scholar 

  46. I. Merino-Garcia, J. Albo, J. Solla-Gullón, V. Montiel, A. Irabien, J. CO2 Util. (2019). https://doi.org/10.1016/j.jcou.2019.03.002

    Article  Google Scholar 

  47. H. Xiao, T. Cheng, W.A. Goddard III., J. Am. Chem. Soc. (2017). https://doi.org/10.1021/jacs.6b06846

    Article  PubMed  PubMed Central  Google Scholar 

  48. A. Wuttig, C. Liu, Q. Peng, M. Yaguchi, C.H. Hendon, K. Motobayashi, S. Ye, M. Osawa, Y. Surendranath, A.C.S. Cent, Sci. (2016). https://doi.org/10.1021/acscentsci.6b00155

    Article  Google Scholar 

  49. C.S. Chen, A.D. Handoko, J.H. Wan, L. Ma, D. Ren, B.S. Yeo, Catal. Sci. Technol. (2015). https://doi.org/10.1039/c4cy00906a

    Article  Google Scholar 

  50. J. Xie, Y. Huang, H. Yu, Front. Environ. Sci. Eng. (2015). https://doi.org/10.1007/s11783-014-0742-1

    Article  Google Scholar 

  51. R. Reske, M. Duca, M. Oezaslan, K.J.P. Schouten, M.T.M. Koper, P. Strasser, J. Phys. Chem. Lett. (2013). https://doi.org/10.1021/jz401087q

    Article  Google Scholar 

  52. K.P. Kuhl, E.R. Cave, D.N. Abram, T.F. Jaramillo, Energy Environ. Sci. (2012). https://doi.org/10.1039/c2ee21234j

    Article  Google Scholar 

  53. A.A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J.K. Nørskov, Energy Environ. Sci. (2010). https://doi.org/10.1039/c0ee00071j

    Article  Google Scholar 

  54. S.V. Daele, L. Hintjens, S. Hoekx, B. Bohlen, S. Neukermans, N. Daems, J. Hereijgersa, T. Breugelmans, Appl. Catal. B (2024). https://doi.org/10.1016/j.apcatb.2023.123345

    Article  Google Scholar 

  55. Z. Zhang, S. Li, Y. Rao, L. Yang, W. Yan, H. Xu, Chem. Eng. J. (2024). https://doi.org/10.1016/j.cej.2023.147376

    Article  Google Scholar 

  56. X. Sun, L. Wang, X. Lan, Q. Lu, Y. Tuo, C. Ye, D. Wang, C. Xu, Appl. Catal. B (2024). https://doi.org/10.1016/j.apcatb.2023.123389

    Article  Google Scholar 

  57. S.K. Sharma, H.T. Ahangari, B. Johannessen, V.B. Golovko, A.T. Marshall, Electrocatalysis (2023). https://doi.org/10.1007/s12678-023-00821-2

    Article  Google Scholar 

  58. Y. Li, G.J. Stec, A.E. Thorarinsdottir, R.D. McGillicuddy, S.-L. Zheng, J.A. Mason, Chem. Sci. (2023). https://doi.org/10.1039/d3sc04085b

    Article  PubMed  PubMed Central  Google Scholar 

  59. L. Zhang, J. Feng, S. Liu, X. Tan, L. Wu, S. Jia, L. Xu, X. Ma, X. Song, J. Ma, X. Sun, B. Han, Adv. Mater. (2023). https://doi.org/10.1002/adma.202209590

    Article  PubMed  PubMed Central  Google Scholar 

  60. Q. Feng, Y. Sun, X. Gu, Z. Dong, Electrocatalysis (2022). https://doi.org/10.1007/s12678-022-00766-y

    Article  Google Scholar 

  61. Q. Xiang, F. Li, J. Wang, W. Chen, Q. Miao, Q. Zhang, P. Tao, C. Song, W. Shang, H. Zhu, T. Deng, J. Wu, A.C.S. Appl, Mater. Interfaces (2021). https://doi.org/10.1021/acsami.0c20302

    Article  Google Scholar 

  62. J. Choi, J. Kim, P. Wagner, S. Gambhir, R. Jalili, S. Byun, S. Sayyar, Y.M. Lee, D.R. MacFarlane, G.G. Wallace, D.L. Officer, Energy Environ. Sci. (2019). https://doi.org/10.1039/C8EE03403F

    Article  Google Scholar 

  63. N. Todoroki, H. Tei, H. Tsurumaki, T. Miyakawa, T. Inoue, T. Wadayama, ACS Catal. (2019). https://doi.org/10.1021/acscatal.8b04852

    Article  Google Scholar 

  64. Q.H. Low, N.W.X. Loo, F. Calle-Vallejo, B.S. Yeo, Angew. Chem. Int. Ed. (2019). https://doi.org/10.1002/anie.201810991

    Article  Google Scholar 

  65. Y. Pan, R. Lin, Y. Chen, S. Liu, W. Zhu, X. Cao, W. Chen, K. Wu, W.-C. Cheong, Y. Wang, L. Zheng, J. Luo, Y. Lin, Y. Liu, C. Liu, J. Li, Q. Lu, X. Chen, D. Wang, Q. Peng, C. Chen, Y. Li, J. Am. Chem. Soc. (2018). https://doi.org/10.1021/jacs.8b00814

    Article  PubMed  PubMed Central  Google Scholar 

  66. S. Liu, H. Tao, L. Zeng, Q. Liu, Z. Xu, Q. Liu, J.-L. Luo, J. Am. Chem. Soc. (2017). https://doi.org/10.1021/jacs.6b12103

    Article  PubMed  PubMed Central  Google Scholar 

  67. M. Dunwell, Q. Lu, J.M. Heyes, J. Rosen, J.G. Chen, Y. Yan, F. Jiao, B. Xu, J. Am. Chem. Soc. (2017). https://doi.org/10.1021/jacs.6b13287

    Article  PubMed  Google Scholar 

  68. D.L.T. Nguyen, M.S. Jee, D.H. Won, H. Jang, H.-S. Oh, B.K. Min, Y.J. Hwang, ACS Sustainable Chem. Eng. (2017). https://doi.org/10.1021/acssuschemeng.7b02460

    Article  Google Scholar 

  69. C. Rogers, W.S. Perkins, G. Veber, T.E. Williams, R.R. Cloke, F.R. Fischer, J. Am. Chem. Soc. (2017). https://doi.org/10.1021/jacs.6b12217

    Article  PubMed  PubMed Central  Google Scholar 

  70. M. Liu, Y. Pang, B. Zhang, P. De Luna, O. Voznyy, J. Xu, X. Zheng, C.T. Dinh, F. Fan, C. Cao, F.P.G. de Arquer, T.S. Safaei, A. Mepham, A. Klinkova, E. Kumacheva, T. Filleter, D. Sinton, S.O. Kelley, E.H. Sargent, Nature (2016). https://doi.org/10.1038/nature19060

    Article  PubMed  PubMed Central  Google Scholar 

  71. C. Kim, H.S. Jeon, T. Eom, M.S. Jee, H. Kim, C.M. Friend, B.K. Min, Y.J. Hwang, J. Am. Chem. Soc. (2015). https://doi.org/10.1021/jacs.5b06568

    Article  PubMed  PubMed Central  Google Scholar 

  72. Q. Lu, J. Rosen, Y. Zhou, G.S. Hutchings, Y.C. Kimmel, J.G. Chen, F. Jiao, Nat. Commun. (2014). https://doi.org/10.1038/ncomms4242

    Article  PubMed  PubMed Central  Google Scholar 

  73. W. Zhu, R. Michalsky, Ö. Metin, H. Lv, S. Guo, C.J. Wright, X. Sun, A.A. Peterson, S. Sun, J. Am. Chem. Soc. (2013). https://doi.org/10.1021/ja409445p

    Article  PubMed  PubMed Central  Google Scholar 

  74. C. Delacourt, P.L. Ridgway, J.B. Kerr, J. Newman, J. Electrochem. Soc. (2008). https://doi.org/10.1149/1.2801871

    Article  Google Scholar 

  75. S. Ikeda, A. Hattori, M. Maeda, K. Ito, H. Noda, Electrochemistry (2000). https://doi.org/10.5796/electrochemistry.68.257

    Article  Google Scholar 

  76. D. Bhalothia, H.-Y. Liu, S.-H. Chen, Y.-T. Tseng, W. Li, S. Dai, K.-W. Wang, T.-Y. Chen, Chem. Eng. J. (2024). https://doi.org/10.1016/j.cej.2023.148295

    Article  Google Scholar 

  77. B.N. Khiarak, A. Fell, N. Anand, S.M. Sadaf, C.-T. Dinh, Catal. Today (2024). https://doi.org/10.1016/j.cattod.2023.114393

    Article  Google Scholar 

  78. H. Xue, Z.-H. Zhao, P.-Q. Liao, X.-M. Chen, J. Am. Chem. Soc. (2023). https://doi.org/10.1021/jacs.3c05023

    Article  PubMed  PubMed Central  Google Scholar 

  79. Q. Wang, X. Yang, H. Zang, C. Liu, J. Wang, N. Yu, L. Kuai, Q. Qin, B. Geng, Small (2023). https://doi.org/10.1002/smll.202303172

    Article  PubMed  PubMed Central  Google Scholar 

  80. K. Fernández-Caso, G. Díaz-Sainz, M. Alvarez-Guerra, A. Irabien, ACS Energy Lett. (2023). https://doi.org/10.1021/acsenergylett.3c00489

    Article  Google Scholar 

  81. C. Ye, F. Dattila, X. Chen, N. López, M.T.M. Koper, J. Am. Chem. Soc. (2023). https://doi.org/10.1021/jacs.3c03786

    Article  PubMed  PubMed Central  Google Scholar 

  82. M. Oßkopp, A. Löwe, C.M.S. Lobo, S. Baranyai, T. Khoza, M. Auinger, E. Klemm, J. CO2 Util. (2022). https://doi.org/10.1016/j.jcou.2021.101823

    Article  Google Scholar 

  83. J. Li, M. Zhu, Y.-F. Han, ChemCatChem (2021). https://doi.org/10.1002/cctc.202001350

    Article  Google Scholar 

  84. A.S. Ansari, J.W. Han, B. Shong, J. Ind. Eng. Chem. (2021). https://doi.org/10.1016/j.jiec.2021.01.016

    Article  Google Scholar 

  85. L. Li, A. Ozden, S. Guo, F.P.G. de Arquer, C. Wang, M. Zhang, J. Zhang, H. Jiang, W. Wang, H. Dong, D. Sinton, E.H. Sargent, M. Zhong, Nat. Commun. (2021). https://doi.org/10.1038/s41467-021-25573-9

    Article  PubMed  PubMed Central  Google Scholar 

  86. X. Wei, Y. Li, L. Chen, J. Shi, Angew. Chem. Int. Ed. (2021). https://doi.org/10.1002/anie.202012066

    Article  Google Scholar 

  87. M. Morimoto, Y. Takatsuji, R. Yamasaki, H. Hashimoto, I. Nakata, T. Sakakura, T. Haruyama, Electrocatalysis (2018). https://doi.org/10.1007/s12678-017-0434-2

    Article  Google Scholar 

  88. B. Kumar, V. Atla, J.P. Brian, S. Kumari, T.Q. Nguyen, M. Sunkara, J.M. Spurgeon, Angew. Chem. Int. Ed. (2017). https://doi.org/10.1002/anie.201612194

    Article  Google Scholar 

  89. Z. Chen, N. Wang, S. Yao, L. Liu, J. CO2 Util. (2017). https://doi.org/10.1016/j.jcou.2017.09.023

    Article  Google Scholar 

  90. J.T. Feaster, C. Shi, E.R. Cave, T. Hatsukade, D.N. Abram, K.P. Kuhl, C. Hahn, J.K. Nørskov, T.F. Jaramillo, ACS Catal. (2017). https://doi.org/10.1021/acscatal.7b00687

    Article  Google Scholar 

  91. C.H. Lee, M.W. Kanan, ACS Catal. (2015). https://doi.org/10.1021/cs5017672

    Article  Google Scholar 

  92. X. Min, M.W. Kanan, J. Am. Chem. Soc. (2015). https://doi.org/10.1021/ja511890h

    Article  PubMed  Google Scholar 

  93. S. Zhang, P. Kang, T.J. Meyer, J. Am. Chem. Soc. (2014). https://doi.org/10.1021/ja4113885

    Article  PubMed  PubMed Central  Google Scholar 

  94. S.R. Narayanan, B. Haines, J. Soler, T.I. Valdez, J. Electrochem. Soc. (2011). https://doi.org/10.1149/1.3526312

    Article  Google Scholar 

  95. M. Todoroki, K. Hara, A. Kubo, T. Sakata, J. Electroanal. Chem. (1995). https://doi.org/10.1016/0022-0728(95)04010-L

    Article  Google Scholar 

  96. Y. Hori, in Handbook of Fuel Cells Fundamentals Technology and Applications. ed. by W. Vielstich, A. Lamm, H.A. Gasteiger (John Wiley & Sons Inc., New York, 2003), pp.720–723

    Google Scholar 

  97. K.P. Kuhl, T. Hatsukade, E.R. Cave, D.N. Abram, J. Kibsgaard, T.F. Jaramillo, J. Am. Chem. Soc. (2014). https://doi.org/10.1021/ja505791r

    Article  PubMed  Google Scholar 

  98. Y. Katayama, F. Nattino, L. Giordano, J. Hwang, R.R. Rao, O. Andreussi, N. Marzari, Y. Shao-Horn, J. Phys. Chem. C (2019). https://doi.org/10.1021/acs.jpcc.8b09598

    Article  Google Scholar 

  99. J. Lee, J. Lim, C.-W. Roh, H.S. Whang, H. Lee, J. CO2 Util. (2019). https://doi.org/10.1016/j.jcou.2019.03.022

    Article  Google Scholar 

  100. M. Jitaru, D.A. Lowy, M. Toma, B.C. Toma, L. Oniciu, J. Appl. Electrochem. (1997). https://doi.org/10.1023/A:1018441316386

    Article  Google Scholar 

  101. M. Umeda, Y. Niitsuma, T. Horikawa, S. Matsuda, M. Osawa, A.C.S. Appl, Energy Mater. (2020). https://doi.org/10.1021/acsaem.9b02178

    Article  Google Scholar 

  102. A. Bagger, W. Ju, A.S. Varela, P. Strasser, J. Rossmeisl, ChemPhysChem (2017). https://doi.org/10.1002/cphc.201700736

    Article  PubMed  Google Scholar 

  103. M. Boudart, in Handbook of Heterogeneous Catalysis. ed. by G. Ertl, H. Knözinger, J. Weitkamp (Wiley-VCH, Weinheim, 1997), pp.1–13

    Google Scholar 

  104. T. Cheng, H. Xiao, W.A. Goddard III., PNAS (2017). https://doi.org/10.1073/pnas.1612106114

    Article  PubMed  PubMed Central  Google Scholar 

  105. S. Matsuda, M. Tanaka, M. Umeda, Anal. Methods (2022). https://doi.org/10.1039/d2ay01087a

    Article  PubMed  Google Scholar 

  106. G.O. Larrazábal, A.J. Martín, J. Pérez-Ramírez, J. Phys. Chem. Lett. (2017). https://doi.org/10.1021/acs.jpclett.7b01380

    Article  PubMed  Google Scholar 

  107. P.N. Ross, Z. Galus, in Standard Potentials in Aqueous Solutions. ed. by A.J. Bard, R. Parsons, J. Jardan (Marcel Dekker Inc, New York and Basel, 1985), pp.41 and 195

    Google Scholar 

  108. Q. Ye, X. Zhao, R. Jin, F. Dong, H. Xie, B. Deng, J. Mater. Chem. A (2023). https://doi.org/10.1039/d3ta03757f

    Article  Google Scholar 

  109. N. Gupta, M. Gattrell, B. Macdougall, J. Appl. Electrochem. (2006). https://doi.org/10.1007/s10800-005-9058-y

    Article  Google Scholar 

  110. Z. Zhang, X. Huang, Z. Chen, J. Zhu, B. Endrődi, C. Janáky, D. Deng, Angew. Chem. Int. Ed. (2023). https://doi.org/10.1002/anie.202302789

    Article  Google Scholar 

  111. Z. Jin, Y. Guo, C. Qiu, Sustainability (2022). https://doi.org/10.3390/su14095579

    Article  Google Scholar 

  112. N.-H. Tran, H.P. Duong, G. Rousse, S. Zanna, M.W. Schreider, M. Fontecave, A.C.S. Appl, Mater. Interfaces (2022). https://doi.org/10.1021/acsami.2c06068

    Article  Google Scholar 

  113. L.-C. Weng, A.T. Bell, A.Z. Weber, Energy Environ. Sci. (2019). https://doi.org/10.1039/C9EE00909D

    Article  Google Scholar 

  114. D. Kim, Y. Chae, U. Lee, W. Kim, D.H. Won, Curr. Opin. Electrochem. (2023). https://doi.org/10.1016/j.coelec.2023.101295

    Article  PubMed  PubMed Central  Google Scholar 

  115. P. Wei, H. Li, R. Li, Y. Wang, T. Liu, R. Cai, D. Gao, G. Wang, X. Bao, Small (2023). https://doi.org/10.1002/smll.202300856

    Article  PubMed  Google Scholar 

  116. J. Bi, P. Li, J. Liu, Y. Wang, X. Song, X. Kang, X. Sun, Q. Zhu, B. Han, Angew. Chem. Int. Ed. (2023). https://doi.org/10.1002/anie.202307612

    Article  Google Scholar 

  117. N. Zhu, X. Zhang, N. Chen, J. Zhu, X. Zheng, Z. Chen, T. Sheng, Z. Wu, Y. Xiong, J. Am. Chem. Soc. (2023). https://doi.org/10.1021/jacs.3c09307

    Article  PubMed  PubMed Central  Google Scholar 

  118. W. Choi, Y. Choi, E. Choi, H. Yun, W. Jung, W.H. Lee, H.-S. Oh, D.H. Won, J. Na, Y.J. Hwang, J. Mater. Chem. A (2022). https://doi.org/10.1039/D1TA10939A

    Article  Google Scholar 

  119. L.M. Aeshala, R.G. Uppaluri, A. Verma, J CO Util. (2013). https://doi.org/10.1016/j.jcou.2013.09.004

    Article  Google Scholar 

  120. I. Merino-Garcia, J. Albo, A. Irabien, Energy Technol. (2017). https://doi.org/10.1002/ente.v5.6

    Article  Google Scholar 

  121. Y. Niitsuma, K. Sato, S. Matsuda, S. Shironita, M. Umeda, J. Electrochem. Soc. (2019). https://doi.org/10.1149/2.0531904jes

    Article  Google Scholar 

  122. J. Liu, L. Peng, Y. Zhou, L. Lv, J. Fu, J. Lin, D. Guay, J. Qiao, ACS Sustainable Chem. Eng. (2019). https://doi.org/10.1021/acssuschemeng.9b03892

    Article  PubMed  Google Scholar 

  123. C.M. Gabardo, C.P. O’Brien, J.P. Edwards, C. McCallum, Y. Xu, C.-T. Dinh, J. Li, E.H. Sargent, D. Sinton, Joule (2019). https://doi.org/10.1016/j.joule.2019.07.021

    Article  Google Scholar 

  124. M. Umeda, Y. Yoshida, S. Matsuda, Electrochim. Acta (2020). https://doi.org/10.1016/j.electacta.2020.135945

    Article  Google Scholar 

  125. J. Hu, T. Qu, Y. Liu, X. Dai, Q. Tan, Y. Chen, S. Guo, Y. Liu, J. Mater. Chem. A (2021). https://doi.org/10.1039/d0ta11232a

    Article  Google Scholar 

  126. S. Matsuda, Y. Niitsuma, Y. Yoshida, M. Umeda, Sci. Rep. (2021). https://doi.org/10.1038/s41598-021-87841-4

    Article  PubMed  PubMed Central  Google Scholar 

  127. Y. Xu, F. Li, A. Xu, J.P. Edwards, S.-F. Hung, C.M. Gabardo, C.P. O’Brien, S. Liu, X. Wang, Y. Li, J. Wicks, R.K. Miao, Y. Liu, J. Li, J.E. Huang, J. Abed, Y. Wang, E.H. Sargent, D. Sinton, Nat. Commun. (2021). https://doi.org/10.1038/s41467-021-23065-4

    Article  PubMed  PubMed Central  Google Scholar 

  128. S. Matsuda, Y. Yoshida, M. Umeda, Int. J. Energy Res. (2022). https://doi.org/10.1002/er.7836

    Article  Google Scholar 

  129. Y. Liu, T. Zhang, C. Deng, S. Cao, X. Dai, S. Guo, Y. Chen, Q. Tan, H. Zhu, S. Zhang, Y. Liu, J. Energy Chem. (2022). https://doi.org/10.1016/j.jechem.2022.04.051

    Article  Google Scholar 

  130. W.-C. Liao, D.-H. Tsai, W.-Z. Hong, Y.-H. Huang, L.-C. Lin, Y.-T. Pan, Chem. Eng. J. (2022). https://doi.org/10.1016/j.cej.2022.134765

    Article  PubMed  PubMed Central  Google Scholar 

  131. T. Hibino, K. Kobayashi, M. Nagao, Z. Dongwen, C. Siyuan, J. Mater. Chem. A (2022). https://doi.org/10.1039/d2ta04011e

    Article  Google Scholar 

  132. S. Matsuda, T. Sakoda, R. Ishibashi, M. Umeda, ChemElectroChem (2022). https://doi.org/10.1002/celc.202200837

    Article  Google Scholar 

  133. P. Zhao, H. Jiang, H. Shen, S. Yang, R. Gao, Y. Guo, Q. Zhang, H. Zhang, Angew. Chem. Int. Ed. (2023). https://doi.org/10.1002/anie.202314121

    Article  Google Scholar 

  134. Y. Dai, H. Li, C. Wang, W. Xue, M. Zhang, D. Zhao, J. Xue, J. Li, L. Luo, C. Liu, X. Li, P. Cui, Q. Jiang, T. Zheng, S. Gu, Y. Zhang, J. Xiao, C. Xia, J. Zeng, Nat. Commun. (2023). https://doi.org/10.1038/s41467-023-39048-6

    Article  PubMed  PubMed Central  Google Scholar 

  135. J. Zhao, P. Zhang, T. Yuan, D. Cheng, S. Zhen, H. Gao, T. Wang, Z.-J. Zhao, J. Gong, J. Am. Chem. Soc. (2023). https://doi.org/10.1021/jacs.2c12006

    Article  PubMed  PubMed Central  Google Scholar 

  136. C.A. Obasanjo, G. Gao, J. Crane, V. Golovanova, F.P.G. de Arquer, C.-T. Dinh, Nat. Commun. (2023). https://doi.org/10.1038/s41467-023-38963-y

    Article  PubMed  PubMed Central  Google Scholar 

  137. M. Fan, R.K. Miao, P. Ou, Y. Xu, Z.-Y. Lin, T.-J. Lee, S.-F. Hung, K. Xie, J.E. Huang, W. Ni, J. Li, Y. Zhao, A. Ozden, C.P. O’Brien, Y. Chen, Y.C. Xiao, S. Liu, J. Wicks, X. Wang, J. Abed, E. Shirzadi, E.H. Sargent, D. Sinton, Nat. Commun. (2023). https://doi.org/10.1038/s41467-023-38935-2

    Article  PubMed  PubMed Central  Google Scholar 

  138. J. Li, Y. Jiang, J. Li, X. Wang, H. Liu, N. Zhang, R. Long, Y. Xiong, Nanoscale (2024). https://doi.org/10.1039/D3NR05228A

    Article  PubMed  Google Scholar 

  139. S. Matsuda, S. Tamura, S. Yamanaka, Y. Niitsuma, Y. Sone, M. Umeda, React. Chem. Eng. (2020). https://doi.org/10.1039/d0re00083c

    Article  Google Scholar 

  140. S. Matsuda, S. Yamanaka, M. Umeda, A.C.S. Appl, Mater. Interfaces (2023). https://doi.org/10.1021/acsami.3c09131

    Article  Google Scholar 

  141. J. Giner, Electrochim. Acta (1963). https://doi.org/10.1016/0013-4686(63)80054-7

    Article  Google Scholar 

  142. B. Beden, A. Bewick, M. Razaq, J. Weber, J. Electroanal. Chem. (1982). https://doi.org/10.1016/0022-0728(82)85116-4

    Article  Google Scholar 

  143. T. Iwashita, F.C. Nart, B. Lopez, W. Vielstich, Electrochim. Acta (1992). https://doi.org/10.1016/0013-4686(92)85133-6

    Article  Google Scholar 

  144. S. Taguchi, A. Aramata, M. Enyo, J. Electroanal. Chem. (1994). https://doi.org/10.1016/0022-0728(93)03287-Y

    Article  Google Scholar 

  145. K. Kunimatsu, T. Senzaki, G. Samjeské, M. Tsushima, M. Osawa, Electrochim. Acta (2007). https://doi.org/10.1016/j.electacta.2006.12.007

    Article  Google Scholar 

  146. S. Matsuda, T. Mukai, S. Sakurada, N. Uchida, M. Umeda, New J. Chem. (2019). https://doi.org/10.1039/c9nj03092a

    Article  Google Scholar 

  147. C. Shi, C.P. O’Grady, A.A. Peterson, H.A. Hansen, J.K. Nørskov, Phys. Chem. Chem. Phys. (2013). https://doi.org/10.1039/c3cp50645b

    Article  PubMed  Google Scholar 

  148. S. Trasatti, J. Electroanal. Chem. (1972). https://doi.org/10.1016/S0022-0728(72)80485-6

    Article  Google Scholar 

  149. H. Furukawa, S. Matsuda, S. Tanaka, S. Shironita, M. Umeda, Appl. Surf. Sci. (2018). https://doi.org/10.1016/j.apsusc.2017.10.219

    Article  Google Scholar 

  150. S. Jia, S. Matsuda, S. Tamura, S. Shironita, M. Umeda, Electrochim. Acta (2018). https://doi.org/10.1016/j.electacta.2017.12.153

    Article  Google Scholar 

  151. M. Wakisaka, S. Mitsui, Y. Hirose, K. Kawashima, H. Uchida, M. Watanabe, J. Phys. Chem. B (2006). https://doi.org/10.1021/jp0653510

    Article  PubMed  Google Scholar 

  152. E. Christoffersen, P. Liu, A. Ruban, H.L. Skriver, J.K. Nørskov, J. Catal. (2001). https://doi.org/10.1006/jcat.2000.3136

    Article  Google Scholar 

  153. P. Waszczuk, A. Wieckowski, P. Zelenay, S. Gottesfeld, C. Coutanceau, J.-M. Léger, C. Lamy, J. Electroanal. Chem. (2001). https://doi.org/10.1016/S0022-0728(01)00559-9

    Article  Google Scholar 

Download references

Funding

This study was supported by the Japan Science and Technology Agency (JST) through the Advanced Catalytic Transformation Program for Carbon Utilization (ACT-C, Grant Number JPMJCR12Y4) and JSPS KAKENHI, Grant Number JP20H00282.

Author information

Authors and Affiliations

Authors

Contributions

M.U. supervised the entire project. S.M. and M.O. wrote the main manuscript text and prepared figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Minoru Umeda.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 39 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuda, S., Osawa, M. & Umeda, M. Progress of CO2 Electrochemical Methanation Using a Membrane Electrode Assembly. Electrocatalysis 15, 318–328 (2024). https://doi.org/10.1007/s12678-024-00873-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-024-00873-y

Keywords

Navigation